

Declaration

The firmware of DBM01 was updated on Dec 23, 2013. Comparing to the old version, some new functions are added:

- AT commands are added.
- Central/peripheral mode can be switched in the same board
- Power-saving modes are introduced

The modules were purchased before Dec 24, 2013 from DORJI or resellers / distributors use the datasheet of **Version 1.02**

DBM01

2.4-GHz Low Energy Bluetooth 4.0 Module

V2.11

Features:

■ Frequency Range: 2402~2480MHz

UART Data Interface

■ Sensitivity: -93dBm

■ Output Power: ≥3dBm

■ AES-128 Encryption and Decryption

Self-adaptable frequency hopping

Different power-saving modes

• Four types of pairing mechnism

■ Supply voltage: 2.0~3.6V

Applications

- 2.4GHz Bluetooth low energy system
- Mobile phone accessories
- Sports and leisure equipment
- Consumer Electronics
- Human interface devices
- USB dongles
- Health care and medical

DESCRIPTION

DBM01 is a type of low energy data transmission Bluetooth module based on CC2540 from Texas Instruments. Combining the advantages of compact size, extra low power consumption, strong anti-interference and long communication distance, it is very suitable for short range wireless communication in Things of Internet. The module integrates PCB antenna on board. Because the RF circuits of DBM01 are well matched and optimized, users are free from time-consuming RF design and only need to focus on the slight work on UART communication.

DBM01 can be used to communicate with other Bluetooth devices such as iPhone system. This module can be switched between Central mode and peripheral mode by external I/O pin or AT commands. In peripheral mode, users can set modules in different power-saving modes by changing the broadcasting time through AT commands. DBM01 provides four types of matching modes for Central and Peripheral modules, which provides high flexibility for different applications.

PIN FUNCTIONS

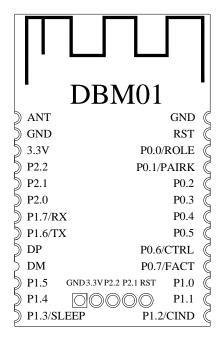


Figure 1: DBM01 Pin Layout

PIN	Name	Function	Description	
1	ANT	ANT port	Optional; DBM01 has antenna on board so it should be floated	
2	GND	Ground	Ground (0V)	
3	VCC	Power	+2.0~3.6V	
4~6	P2.2~P2.0	Digital I/O	Digital Input/Output pin	
7	RX/P1.7	UART port	UART interface; RX pin	
8	TX/P1.6	UART port	UART interface; TX pin	
9	DP	USB port	USB positive +, no function	
10	DM	USB port	USB positive -, no function	
11~12	P1.5~P1.4	Digital I/O	Digital Input/Output pin	
13	SLEEP/P1.3	Digital I	Low-→ effective, the module will be forced to enter into sleep	
			mode even there is data flow at UART interface. The module	
			will quit sleep mode when there is a low-to-high pulse on it	
14	CIND/P1.2	Digital O	Connection indication, Low-→ unconnected, High-→connected	
15~16	P1.1~P1.0	Digital I/O	Digital Input/Output pin	
17	FACT/P0.7	Digital I	Low-→effective at start-up, default UART data format will be	
			loaded but flash is not overlapped.	
18	CTRL/P0.6	Digital I	This pin is used to configure the UART interface to command	
			mode or transparent data mode. Low-→ command mode,	
			High-→ transparent data mode. When the level of this pin is	
			changed, users need to wait for 200ms at least before using	

			UART interface	
19~22	P0.5~P0.2	Digital I/O	Digital Input/Output pin	
23	PAIRK/P0.1	Digital I	Matching key port. Low-→ effective only when PAIRM is 1 and	
			FORCEK is 0.	
24	ROLE/P0.0	Digital I	Central/peripheral mode selection, only effective at start-up.	
			Low→ Central module, High-→Peripheral module	
25	RST	Input	Reset pin; Low effective	
26	GND	Ground	Ground (0V)	

Table 1: DBM01 Pin Functions

ELECTRICAL SPECIFICATIONS

Symbol	Parameter (condition)	Min.	Тур.	Max.	Units
VCC	Supply Voltage	2.0	3.3	3.6	V
Temp	Operating temperature range	-10	25	60	°C
Freq	Frequency range	2.402		2.48	GHz
Idd_r	RX current in data transmission mode			22.1	mA
Idd_t	TX current in data transmission mode			31.6	mA
Idd_s	Current in sleep mode.		500		uA
Pout	Max. output power		3	4	dBm
Sen.	Receiver sensitivity			-93	dBm

Table 2: DBM01 Electrical Specifications

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min.	Max.	Units
VCC	Supply Voltage	-0.3	3.6	V
VI	Input voltage	-0.3	VCC+0.3	V
VO	Output voltage	-0.3	VCC+0.3	V
Тѕт	Storage temperature	-55	125	°C

Table 3: DBM01 Maximum Ratings

APPLICATIONS

DBM01 module can work at default data formats. Users also can change the factory settings by AT commands according to actual application situations.

Baud rate	Data bit	Stop bit	Parity check	Flow control
38.4 kbps	8 bits	1 bit	No	No

Table 4: DBM01 Default UART Data Format

DBM01 can be configured to work as peripheral module or central module. There are four types of pairing mechanism between central module and peripheral module. Only one type of mechanism can be chosen for one pair of modules at the same time. Users can choose the suitable pairing mechanism by AT command AT+PAIRM=X. In real application, the peripheral module is responsible for broadcasting its own information and waits for connecting. For the central module, it scans surrounding peripheral modules and launches the connection to a peripheral module actively.

1. Automatic Mode (AT+PAIRM=0)

It is the default mode when the parameters of DBM01 modules are not changed by AT commands. In this mode the peripheral module will broadcast its information and wait for the connection request from the central module. The central module scans the surrounding peripheral modules and connects to the first peripheral module which it finds.

Please note that if the PAIRK pin [P0.1] is connected to logic low, the module will quit this mode and enter into PAIRK mode. The central module will scan and connect the peripheral in PAIRK pairing mechanism. This mode is suitable for two types of situations.

• Single peripheral module application

In this mode, the ROLE pin is floated so the DBM01 module works as peripheral module. The IPHONE or Android device plays the role of central module. The devices will scan all surrounding peripheral modules and list them on the screen by a certain APP. The APP will choose the targeted peripheral module and start connection and communication.

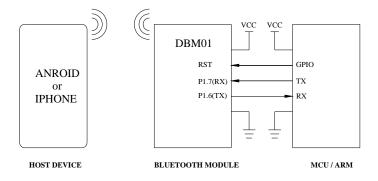


Figure 2: DBM01 Connection Diagram

Simple transparent data transmission

For the application that only two DBM01 modules are used, one DBM01 module is set to central mode by connecting the ROLE to logic low and another to peripheral module as default. The central module will find the peripheral module automatically and start the connection as soon as the two modules are powered on. Please note that if there are more than one peripheral module, the central module will choose one peripheral module randomly.

2. PAIRK Mode (AT+PAIRM=1)

This mode is applicable for those applications which the GPIO pin (P1.0) can be controlled manually by external button. When the PAIRK pins of central module and peripheral module are connected to logic low simultaneously, the two modules start pairing, connecting and communicating. Because the central module takes some time to scan the peripheral modules, it needs some time to pull the PAIRK pin down and release them when the connection succeeds. Users can monitor the level of CIND pin (P1.2) to judge if the connection is successful or not.

If there are many pairs of central module and peripheral modules in the same place, only one pair of central module and peripheral module can be operated in the same time. If there are more than two modules are pulled down to the PAIRK pin, the paired modules are randomly.

Generally the GPIO pin (P1.0) is used to judge if the modules are set in PAIRK MODE. Users also can use AT commands to change the PAIRK mode forcibly. The command AT+FORCEK=1 is equal to pull down the PAIRK pin and the command is equal to release the PAIRK pin logically. The two commands don't reflect to the physical level of GPIO pin (P1.0).

• For the application that there are many Bluetooth toys and one controller. The Bluetooth toys use peripheral modules and the controller uses the central module. When users want to control one toy, the buttons (connecting to PAIRK pin) of that toy and the controller are pressed down. They will enter into PAIRK mode and the pairing will be finished automatically. If another toy needs to be controlled, then the new toy and the controller can be operated just like the first pair.

3. PAIRC Mode (AT+PAIRM=2)

The central module and peripheral module establish connection when they are set with the same pair code which can be any of 32bit integers except 0x00000000 for which it is used to cancel the pair code. Users can use command **AT+PAIRC=X** to set pair code. The X means the integer in Hex code.

In this application many central modules and peripheral modules can coexist. For example, if central module A is set with pair code 0x12345678, it only communicates with the peripheral module with pair code 0x12345678. For the central module with pair code 0x88888888, it

only connects to the peripheral module with pair code 0x88888888. If there are more than two modules set with the same pair code, the central module pairs with one peripheral module randomly so users should avoid such configuration in the application.

- In wireless LED control based on DBM01 modules, one controller and one LED lamp are set with the same pair code. Other controllers will not connect the targeted LED lamp and avoid mal-operation.
- In the production room there are many worktables. Each worktable is equipped with a peripheral module with an unique pair code which can be labeled on the worktable. The scanner is equipped with a central module. When the scanner needs to read the data from one worktable, it can change the pair code of central module to the same as the code on the worktable and establish communication between the targeted worktable and it.

4. PAIRA Mode (AT+PAIRM=3)

This mode refers to the address matching between two Bluetooth modules. Because each module has an unique address, it can avoid random pairing. Users can use AT command AT+ADDR to get the Bluetooth module's address of its own. For example, users can use AT+ADDR command to get the address of central module X and peripheral module Y. Users then set the PAIRA of central module to Y by command AT+ADDR=Y and the PAIRA of peripheral module to X by command AT+ADDR=X. Then users save the change by command AT+SAVE and reset the module by command AT+RESET to activate PAIRA mode. In this mode, the two modules only can establish connection when they store the PAIRA of each other. If IPHONE or other mobile systems scan the peripheral module in this mode, the system can't connect the peripheral module.

• This mode is suitable for the applications which the PAIRA of targeted modules are not needed to change frequently. In parking system, the scanning device in the entrance can be equipped with one DBM01 module and the Bluetooth module will send the plate number of cars to the central console equipped with another module. Because the two modules work in PAIRA mode, they will deny the connection requests from other irrelated Bluetooth devices automatically.

AT COMMAND SET

DBM01 module provides rich AT commands for users to manipulate the modules. Some commands of DBM01 module come into effect after executing **AT+SAVE** command but for other commands they need to execute another command **AT+RESET** after using command **AT+SAVE** in order to reset the module and let it work in new parameters.

COMMAND SET	DESCRIPTION
AT+E 、 AT+FORCEK 、 AT+FORCEC 、 AT+AUTOSCAN 、	Users need to execute command
AT+NOTIFY、AT+TXPOWER、AT+ADVERT、AT+BTPARAM、	AT+SAVE after using these
AT+BTPARAM2、AT+SLEEP	commands in the left
AT+NAME 、AT+UART 、AT+FLOW 、AT+ROLE 、	Users need to execute command
AT+PAIRM、AT+PAIRC、AT+PAIRA	AT+SAVE and AT+RESET after
	using these commands in the left

Table 5: DBM01 Command Sets

When users send commands to DBM01 for the first time after powering on the module, the CTRL pin (P0.6) of module should be connect to logic low so the module can enter into command mode and start to receive AT commands. Please note if the module is in sleep mode, it might not respond to the AT commands. Please check the SLEEP MODE section for how to quit sleep mode.

1. Testing command

Command Type	Response	Description
AT	OK	Testing command

2. Inquiry command

AT+HELP	Commands:	This command is used to list all the
	Е	supported commands by DBM01
	HELP	module
	SEND	
	CFG	
	SAVE	
	LOAD	
	LOADDEFT	
	NAME	
	UART	
	FLOW	
	ROLE	
	PAIRM	
	PAIRC	
	PAIRA	
	FORCEK	
	FORCEC	
	CONN	
	DISC	
	SCAN	
	DEVLIST	

	ATTECCO	
	AUTOSCAN	
	NOTIFY	
	ADDR	
	TXPOWER	
	ADVERT	
	BTPARAM	
	BTPARAM2	
	SLEEP	
	SLEEPOS	
	RSSI	
	RESET	
	VER	
AT+HELP=X	Set echo on or off	X means the command which needs
	OK	to be inquired. It will return the help
		information of the command

3. Echo ON/OFF command

AT+E=X	OK	Turn on/off echo function for	
		commands being executed.	
		X=1 means enable ECHO	
		X=0 means disable ECHO	
		The default setting of module is	
		ECHO enabled. It is useful when	
		users set the commands through	
	Computer to display the comman		
		they send. For MCU controlling	
		DBM01, the ECHO function can be	
		disabled in order to process the data	
		better.	
AT+E?	1	It inquiries the status of ECHO	
	OK	function in present module.	

4. MAC inquiry command

AT+ADDR	33116AF5990	It returns the MAC address of
	OK	DBM01 module

5. Serial data format command

AT+UART=9600,n,8,1	OK	It sets the data format of serial port
		of DBM01. The parameters after =

AT+E?	38400,n,8,1	rate is 38400 bps It displays the present data format
		bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps. The default data
		means 9600 bps, no parity check, 8 data bits and 1 stop bit The supported data rates are: 9600

6. Inquiry RAM command

AT+CFG	Name: DBM BLE	It displays the changed
	Role: 2	parameters stored in RAM
	UART: 38400,n,8,1	but not saved in flash. In
	Flow Control: 0	other words the parameters
	TX Power: 0	are changed by AT commands
	BT Param: 35,18,37,0,200	but not execute the AT+SAVE
	BT Param2: 128,250,32,10,500	command to save the
	Pair Mode: 0	parameters in Flash.
	Pair Code: 30303030	
	Pair Address: 000000000000	
	Auto Scan: 1	
	Notify Enable: 1	
	Echo Enable: 1	
	Force PAIRK: 0	
	Force CTRL: 0	
	Sleep On Start: 0	
	OK	

Notes: name → Module name

Role \rightarrow Central module or peripheral module

UART → Serial port data format

Flow Control → Enable flow control or not

TX Power → Transmission power

BT Param → DBM01 working parameter list 1

BT Param2 → DBM01 working parameter list 2

Pair Mode → One of four types of pairing modes

Pair Code → Pair code in PAIRC Mode

Pair Address → Pair address in PAIRA Mode

Auto Scan → Enable auto scan function or not

Notify Enable → Enable event notification or not

Echo Enable → Echo function on or off

Force PAIRK → If the PAIRK pin is pulled up or down

Force CTRL \rightarrow If the CTRL pin is pulled up or down Sleep On Start \rightarrow If the module enters into sleep mode when start-up.

7. Inquiry Module Name Command

AT+NAME=X	OK	Configure the name of the module to X
AT+NAME?	DBM BLE	It returns the present name of DBM01
	OK	

8. Flow control Command

AT+FLOW=1	OK	0→ no flow control
		1 → enable flow control
AT+FLOW?	0	It shows present flow control function
	OK	

9. Role Command

AT+ROLE=X	OK	It sets DBM01 module to central
		module or peripheral module
		0→ Depends on ROLE pin
		1→ central module
		2→ peripheral module
AT+ROLE?	0	It shows the role of present module
	OK	

10. Inquiry Version Command

AT+VER	SW:12DBM	It shows the software and hardware
	HW:06	versions of DBM01
	OK	

11. Inquiry RSSI Command

AT+RSSI	-128	It shows present RSSI value. It is only
	OK	meaningful when the modules are in
		connection status

12. Reset Command

AT+RESET	OK	For some commands, they come into
		effect only after executing AT+SAVE
		and AT+RESET. Seeing table 5 for
		related commands

13. Save Command

AT+SAVE	OK	For some commands, they can come
		into effect after executing AT+SAVE.
		Seeing table 5 for related comamnds

14. FLASH Data Load Command

$\Delta T + I \cap \Delta D$	OK	
III ILOIID	OK	

15. Restore Factory Setting Command

AT+LOADDEFT	OK	
-------------	----	--

16. Pairing Mode Command

AT+PAIRM=X	ERROR	0 → Automatic pairing
	OK	1 → Pairing according to PAIRK pin
		2 → Pairing according to PAIRC code
		3 → Pairing according to PAIRA
		address
AT+PAIRM?	0	It shows the present pairing mode
	ОК	

17. PAIRC Code Command

AT+PAIRC=X	ERROR	X means pairing code in PAIRC mode.		
	OK	It is a 4 byte Hex data. If		
		X=0x000000000, it will quit PAIRC		
		mode		
AT+PAIRC?	00000000	It shows the present pairing code		
	OK			

18. PAIRA Address Command

AT+PAIRA=X	OK	X means the address of the paired
		DBM01 module
AT+PAIRA?	9059AF1624AB	It shows the present pairing code
	OK	

19. PAIRK Pin Control Command

AT+FORCEK=X	OK	0 → No process
		1 → Virtually pull down the PAIRK
AT+ FORCEK?	0	
	OK	

20. CTRL Pin Control Command

AT+FORCEC=X	OK	0 → No process
		$1 \rightarrow \text{Virtually pull down the CTRL}$
AT+ FORCEC?	0	
	OK	

21. Connecting Targeted Peripheral Device Command

AT+CONN=X	OK	This command is only available for
		central module. X means the sequence
		number of the peripheral devices
		scanned by central module. X=0 means
		the first peripheral device being found.
		This command is to let the central
		module connect the X peripheral
		module.

22. Disconnect Command

AT+DISC	OK	Disconnect the present link
---------	----	-----------------------------

23. Send Data Command

AT+SEND=X	N bytes sent	X refers to the data needing to be sent.
	OK	The data is in HEX coding and the
		length of data package should not
		exceed 20 bytes. N means the number

	of bytes r	endere	ed to bu	ffer	area and	l not
	indicate	the	data	is	sent	out
	successfu	lly by	wireles	ss		

24. Scan Command (central module only)

AT+SCAN	OK	It triggers the central module to scan
	+DEVS: 0 found	surrounding peripheral modules. The
	+DEVE	result will be transferred to the host at
		the form of events such as +DEVS.

25. Automatic Scan Command (central module only)

AT+AUTOSCAN=X	1	0 → Disable autoscan		
	OK	1 → Enable autoscan		
		When this function is enabled, DBM01 will		
		start scanning automatically in the situations		
		of module start-up, scanning failure		
		disconnecting, etc.		
AT+ AUTOSCAN?	1			
	OK			

26. Broadcast Command (peripheral module only)

AT+ADVERT=X	OK	0 → Stop broadcasting
		1 → Start broadcasting
AT+ ADVERT?	1	
	OK	

27. List Peripheral Module Command (central module only)

AT+DEVLIST	+DEVS: 1 found	This command will list the information
	+DEV:	of all the peripheral modules being
	0, 0x9059AF1624AB, 0,	scanned. +DEVS: shows the number of
	00000000	peripheral devices.
	+DEVE	Among the parameters following
	OK	+DEV, 0 refers to the index of the
		peripheral module, 0x9059AF1624AB
		means the address of DBM01 module,
		the second 0 refers to the pairing mode
		and the last digits refers to the PAIRC
		code.

	+DEVE	means	the	searching	is	
	finished					

28. Notification Command

AT+NOTIFY=X	OK	0 → DBM01 will not send +CONN notice	
		when the module is connected or	
		disconnected	
		1 → DBM01 will send +CONN notice	
AT+NOTIFY?	1		
	OK		

29. Set TX Power Command (peripheral module only)

AT+TXPOWER=X	OK	X means the output power which DBM01
		allows to be set. The values include: 4, 0, -6,
		-23
AT+TXPOWER?	4	
	OK	

30. Configure Working Parameter List1 Command (peripheral module only)

AT+BTPARAM=List1	OK	The command is used to change the response
		speed and power consumption of DBM01.
		List1 refers to the parameters list. Wrong
		parameters might cause the module out of
		service so users can use the parameters lists
		recommended by DORJI.
AT+ BTPARAM?	35,18,37,0,200	
	OK	

31. Sleep Mode Command

AT+SLEEP=X	OK	0 → No sleep	
		$1 \rightarrow$ Sleep when no connection	
		2 → Deep sleep	
AT+ SLEEP?	1	In deep sleep the AT commands are not	
	OK	available so the response only can be 0 or 1	

The power consumption of DBM01 module is not only related to sleep mode but also to Working Parameters List1. The default sleep mode for DBM01 module is 0. It means the module is in

working mode all the time no matter if there is a connection or not. In this mode the module consumes the Max. power but it has the highest response time and transmission speed.

When Sleep mode is set to 1, DBM01 will enter into sleep when there is no connection and activated to normal work mode when connection is available. When the module comes back to normal work mode, the AT commands can be used and RX/TX will be normal. Users can use command AT+SLEEP=0 to quit this mode and return to normal work mode all the time. When there is no connection, the module will enter into sleep and AT commands will not be executed. Users can repeat sending <CR> (Carriage return character) to evoke the module till the host receives the correct response character from the module (Echo function should be enabled). After the module is wakened, the sleep mode will be switched to 0 and never enter into sleep automatically. Another way to evoke the module from sleep status is to impose a pulse with rising edge on the SLEEP pin.

When the Sleep mode is set to 2, the module will enter into sleep at the lowest power consumption mode no matter if there is a connection or not. In this mode the response and transmission speed are the slowest. Because AT commands are ineffective in this mode, data transmission is not available but the module still can receive data which will be informed to the host by the event +DATA. In this mode users can repeat sending <CR> (Carriage return character) to evoke the module till the host receives the correct response character from the module (Echo function should be enabled). After the module is wakened, the sleep mode will be switched to 0 and never enter into sleep automatically. Another way to evoke the module from sleep status is to impose a pulse with rising edge on the SLEEP pin.

The pull down of SLEEP Pin will forcibly let the module enter into sleep status and ignore the setting of Sleep mode (equal to sleep mode 2). The repeating input of <CR> still can't wake up the module so the only way to let the module quit sleep status is to impose a pulse with rising edge on this pin. The module then will be wakened and the sleep mode will be set to 0. If the SLEEP pin is pulled down when there is data flow on the UART port, the data transmission will be interrupted and wrong data will be sent or received. In normal conditions the SLEEP pin is usually used to evoke the module from sleep status quickly.

32. EVENTS NOTICE

In AT command mode, there are some events which can be used to monitor the status of DBM01 module.

Event Type	Event Format	Description	
Connection Status	+CONN: X	0 → disconnected	
		1 → connected	
Start Mark after scanning	+DEVS: X found	X means the number of peripheral	
		modules being scanned	
Device Information After	+DEV:	The first 0 refers to the index of	
Scanning	0,0x9059AF1624AB,0,00000000	the peripheral module,	

		0x9059AF1624AB means the
		address of DBM01 module, the
		second 0 refers to the pairing
		mode and the last digits refers to
		the PAIRC code.
End Mark After Scanning	+DEVE	
Data Received notice	+DATA: x	X refers to the received data in
		Hex format. When the data
		package is too large, the package
		will be split and produce multiple
		+DATA notices

POWER CONSUMPTION

The actual power consumption of DBM01 is not only determined by the sleep modes but also depends on the broadcasting frequency, scanning frequency, TX power, response speed and the connection status of GPIO pins. In order to let the modules work with the best performance, users need to choose the right working parameters list1 according to the applications. The default factory parameters for DBM01 module is speed priority so the power consumption is the maximum.

All of the GPIO pins are internally pull-up. When they are connected with GND, there will be leak current so it will be better to keep the unused GPIO pins floated in order to reduce power consumption. What's more the function of some GPIO pins can be realized by AT commands. For example, the command AT+ROLE=1 is equal to the pull-down of ROLE and AT+FORCEC=1 is equal to the pull-down of PAIRK.

When peripheral module is not connected, it will broadcast frequently. It will reduce the power consumption by lowering down the broadcasting frequency. The broadcasting function of peripheral module can be cancelled by AT command AT+ADVERT=0 but it will not be scanned by the central module. AT command AT+BTPARAM=List1 can be used to adjust the broadcasting frequency of peripheral module.

If the central module doesn't connect with a peripheral module, it will scan the surrounding devices frequently, which makes great contribution to the power consumption Users also can use AT command AT+AUTOSCAN=0 to turn off the auto-scan function. It will lower down the power consumption of central module in unconnected status.

When the peripheral module is connected with a central, the working parameters list is determined by the peripheral module so the power consumption of central module will be decided by the connected peripheral module.

Num	Working Parameters List	Description
1	AT+BTPARAM=35, 18,37,0,200	Default parameters. The broadcasting frequency is 20ms so
		DBM01 has the highest response speed and data transmission
		with the maximum power consumption
2	AT+BTPARAM=800,30,50,0,200	The broadcasting frequency is 0.5s so the response time and
		data transmission speed and power consumption of DBM01
		module are moderate
3	AT+BTPARAM=3200,70,90,0,200	The broadcasting frequency is 2s. The DBM01 module has
		the lowest response time and data transmission but it has the
		lowest power consumption so it is suitable for low data
		output applications.

Table 6: Working Parameters List

The output power of DBM01 also influences the power consumption. The command AT+TXPOWER only affects the peripheral module. Lower output power means lower power consumption but it will reduce communication distance. Anyway the most important factor which affects the power consumption is the sleep mode. As mentioned in the AT command set section, the sleeping of modules can be realized by AT command AT+SLEEP=X or SLEEP pin.

The pull-down of SLEEP pin will force DBM01 module to enter into sleep and the module will ignore sleep mode. Because there is a leak current when a GPIO pin is connected to GND, it is not recommended to use SLEEP pin to control the sleeping of module but this pin can be used to wake up DBM01 module quickly.

Peripheral Module @ AT+SLEEP=2				
Working parameters list	No	Connected without data	Connected with continuous	
Working parameters list	connection	transmission	data transmission	
AT+BTPARAM=35,18,37,0,200	2mA	1.6mA	2.9mA	
AT+BTPARAM=800,30,50,0,200	10uA	850uA	1.8mA	
AT+BTPARAM=3200,70,90,0,200	1.2uA	330uA	500uA	

Table 7: Power Consumption of Peripheral Module

Central Module @ AT+AUTOSCAN=0 & AT+SLEEP=0				
No connection, No scanning No connection, scanning Connected				
7.9mA	20mA	8mA		

Table 8: Power Consumption 1 of Central Module

Central Module @ AT+AUTOSCAN=0 & AT+SLEEP=2				
No connection Connected without data transmission Connected with data transmission				
1.2uA	330uA	500uA		

Table 9: Power Consumption 2 of Central Module

ADDITIONAL INFORMATION

• Communication with IPHONE or IPAD

The DBM01 module can be used to communicate with IPHONE(or IPAD) which the latter acts as the central module to launch the connection and start communication. The DBM01 module will be used as peripheral module. LightBlue is a good APP run in IPHONE or IPAD which can be downloaded from App Store of APPLE as free. This software can search the surrounding Bluetooth devices and shows them in the list. Users can choose the DBM01 device from the list and use the commands below to fulfill data transmission.

Service UUID	ReadOnly Character	WriteOnly Character
0XFFF0	0XFFF4	0xFFF1

Table 10: DBM01 Communicating with IPHONE /IPAD

• Communicating with Android system

The old versions of Android system don't support well for Bluetooth 4.0 module. The Texas instrument also has not provided the official demonstrating software yet. DORJI intends to develop the testing APP on android system 4.3 or above. Any progress on this APP development will be announced on the website of **WWW.DORJI.COM** and related information will be updated in the datasheet.

MECHANICAL DATA

Unit:mm

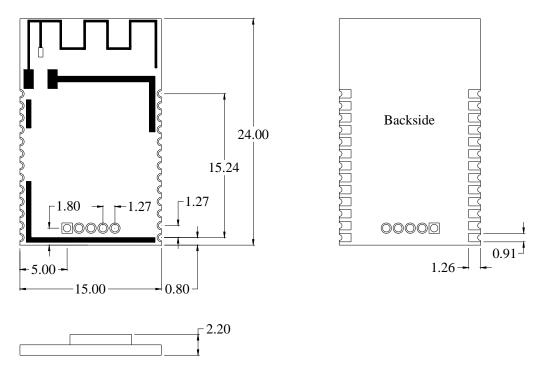
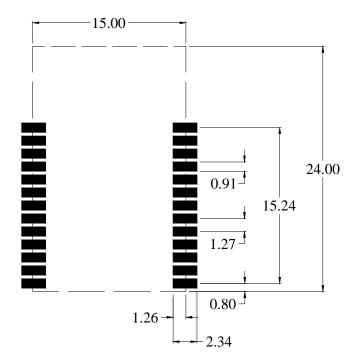



Figure 3: DBM01 Mechanical Dimension

Figure 4: Soldering Pattern Reference

Dorji Applied Technologies

A division of Dorji Industrial Group Co., Ltd

Add.: Xinchenhuayuan 2, Dalangnanlu, Longhua,

Baoan district, Shenzhen, China 518109

Tel: 0086-755-28156122
Fax.: 0086-755-28156133
Email: sales@dorji.com
Web: http://www.dorji.com

Dorji Industrial Group Co., Ltd reserves the right to make corrections, modifications, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers are expected to visit websites for getting newest product information before placing orders.

These products are not designed for use in life support appliances, devices or other products where malfunction of these products might result in personal injury. Customers using these products in such applications do so at their own risk and agree to fully indemnify Dorji Industrial Group for any damages resulting from improper use.