

RFM110

Features

- Embedded EEPROM
 - Very Easy Development with RFPDK
 - All Features Programmable
- Frequency Range: 240 to 480 MHz
- OOK Modulation
- Symbol Rate: 0.5 to 30 kbps
- 1-wire Interface
- Output Power: -10 to +13 dBm
- Supply Voltage: 1.8 to 3.6 V
- Current Consumption: 12.4 mA @ +10 dBm
- Sleep Current < 20 nA
- FCC / ETSI Compliant
- RoHS Compliant
- Module Size:17.8*12.8*5.0mm

Descriptions

The RFM110 is an ultra low-cost, highly flexible, high performance, single-chip OOK transmitter for various 240 to 480 MHz wireless applications. It is part of the CMOSTEK NextGenRFTM family, which includes a complete line of transmitters, receivers and transceivers. The device only requires 1-wire interface for the external MCU or encoder to send in the data and control the transmission. An embedded EEPROM allows the frequency, output power and other features to be programmed into the chip using the CMOSTEK USB Programmer and RFPDK. Alternatively, in stock products of 315/433.92 MHz

are available for immediate demands with no need of EEPROM programming. The RFM110 uses a 1-pin crystal oscillator circuit with the required crystal number of external components. The RFM110 receiver together with the RFM110 transmitterenables an ultra low cost RF link.

RFM110

Applications

- Low-Cost Consumer Electronics Applications
- Home and Building Automation
- Remote Fan Controllers
- Infrared Transmitter Replacements
- Industrial Monitoring and Controls
- Remote Lighting Control
- Wireless Alarm and Security Systems
- Remote Keyless Entry (RKE)

Abbreviations

Abbreviations used in this data sheet are described below

AN	Application Notes	ООК	On-Off Keying BOM
	Bill of Materials	PA	Power Amplifier
BSC	Basic Spacing between Centers	PC	Personal Computer
BW	Bandwidth	PCB	Printed Circuit Board
DC	Direct Current	PLL	Phase Lock Loop
EEPROM	Electrically Erasable Programmable	PN	Phase Noise
	Read-Only Memory	RBW	Resolution Bandwidth
ESD	Electro-Static Discharge	RCLK	Reference Clock
ESR	Equivalent Series Resistance	RF	Radio Frequency
GUI	Graphical User Interface	RFPDK	RF Product Development Kit
IC	Integrated Circuit	RoHS	Restriction of Hazardous Substances
LDO	Low Drop-Out	Rx	Receiving, Receiver
Мах	Maximum	SOT	Small-Outline Transistor
MCU	Microcontroller Unit	TBD	To Be Determined
Min	Minimum	Тх	Transmission, Transmitter
MOQ	Minimum Order Quantity	Тур	Typical
NP0	Negative-Positive-Zero	XO/XOSC	Crystal Oscillator
OBW	Occupied Bandwidth	XTAL	Crystal

Table of Contents

1.	Ele	ctrical Characteristics	4
	1.1	Recommended Operating Conditions	.4
	1.2	Absolute Maximum Ratings	.4
	1.3	Transmitter Specifications	.5
2.	Pin	Descriptions	6
3.	Тур	ical Performance Characteristics	7
4.	Тур	ical Application Schematics	. 8
5.	Fun	ctional Descriptions	9
	5.1	Overview	9
	5.2	Modulation, Frequency and Symbol Rate	9
	5.3	Embedded EEPROM and RFPDK	10
	5.4	Power Amplifier	11
	5.5	PA Ramping	11
	5.6	Working States and Control Interface	12
		5.6.1 Tx Enabled by DATA Pin Rising Edge	13
		5.6.2 Tx Enabled by DATA Pin Falling Edge	13
6.	Ord	ering Information	15
7.	Pac	kage Outline	16
8.	Con	tact Information	17

1. Electrical Characteristics

 V_{DD} = 3.3 V, T_{OP} = 25 °C, F_{RF} = 433.92 MHz, output power is +10 dBm terminated in a matched 50 Ω impedance, unless otherwise noted

1.1 Recommended Operating Conditions

Table 2. Recommended Operation Conditions

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Operation Voltage Supply	V _{DD}		1.8		3.6	V
Operation Temperature	T _{OP}		-40		85	°C
Supply Voltage Slew Rate			1			mV/us

1.2 Absolute Maximum Ratings

Table 3.	Absolute	Maximum	Ratings

[1]

Parameter	Symbol	Conditions	Min	Max	Unit
Supply Voltage	V _{DD}		-0.3	3.6	V
Interface Voltage	V _{IN}		-0.3	V _{DD} + 0.3	V
Junction Temperature	TJ		-40	125	°C
Storage Temperature	T _{STG}		-50	150	°C
Soldering Temperature	T _{SDR}	Lasts at least 30 seconds		255	°C
ESD Rating		Human Body Model (HBM)	-2	2	kV
Latch-up Current		@ 85 ℃	-100	100	mA

Note:

[1]. Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

1.3 Transmitter Specifications

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Frequency Range ^[1]	F _{RF}		240		480	MHz
Synthesizer Frequency	F _{RES}			198		Hz
Resolution						
Maximum Output Power	P _{OUT(Max)}			+13		dBm
Minimum Output Power	P _{OUT(Min)}			-10		dBm
Output Power Step Size	P _{STEP}			1		dB
PA Ramping Time ^[2]	t _{RAMP}		0		1024	us
Current Consumption		0 dBm, 50% duty cycle, 9.6 kbps		6.8		mA
@ 315 MHz	I _{DD315}	+10 dBm, 50% duty cycle, 9.6 kbps		12.4		mA
		+13 dBm, 50% duty cycle, 9.6 kbps		16.0		mA
		0 dBm, 50% duty cycle, 9.6 kbps		6.9		mA
Current Consumption @ 433.92 MHz	I _{DD433.92}	+10 dBm, 50% duty cycle, 9.6 kbps		13.4		mA
@ 433.92 MITZ		+13 dBm, 50% duty cycle, 9.6 kbps		17.4		mA
Sleep Current	I _{SLEEP}			20		nA
Symbol Rate	SR		0.5		30	kbps
Frequency Tune Time	t _{TUNE}			370		us
		100 kHz offset from F _{RF}		-80		dBc/Hz
		200 kHz offset from F _{RF}		-82		dBc/Hz
Phase Noise	PN	400 kHz offset from F _{RF}		-92		dBc/Hz
		600 kHz offset from F _{RF}		-98		dBc/Hz
	H3215	1.2 MHz offset from F _{RF}		-107		dBc/Hz
Harmonics Output for	H2 ₃₁₅	2 nd harm @ 630 MHz, +13 dBm P _{OUT}		-60		dBm
315 MHz ^[3]		3 rd harm @ 945 MHz, +13 dBm P		-65		dBm
	H2 _{433.92}	2 nd harm @ 867.84 MHz, +13 dBm		-52		dBm
Harmonics Output for 433.92 MHz ^[3]	H3 _{433.92}	Р _{о∪т} 3 rd harm @ 1301.76 MHz, +13 dBm		-60		dBm
OOK Extinction Ration		Pout		60		dB
		Measured @ -20 dBc, RBW = 1 kHz,		00		uD
Occupied Bandwidth @ 315 MHz	F _{OBW315}	SR = 1.2 kbps, t_{RAMP} = 256 us		6		kHz
Occupied Bandwidth @ 433.92 MHz	F _{OBW433.92}	Measured @ -20 dBc, RBW = 1 kHz, SR = 1.2 kbps, t _{RAMP} = 256 us		7		kHz

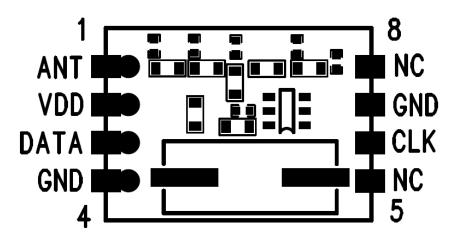
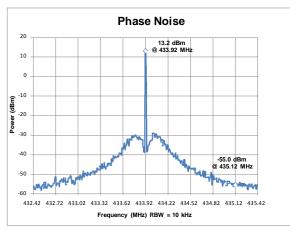
Table 4. Transmitter Specifications

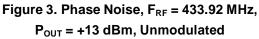
Notes:

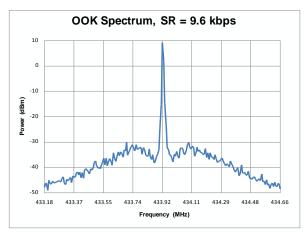
[1]. The frequency range is continuous over the specified range.

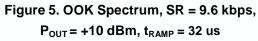
- [2]. 0 and 2ⁿ us, n = 0 to 10, when set to "0", the PA output power will ramp to its configured value in the shortest possible time.
- [3]. The harmonics output is measured with the application shown as Figure 10.

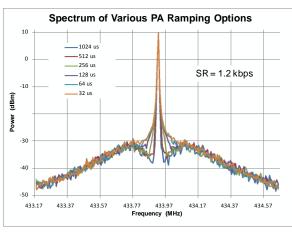
2. Pin Descriptions

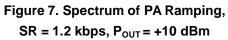




Figure 2. Pin Diagram


Pin Number	Name	I/O	Descriptions
1	ANT	0	Transmitter RF Output
2	VDD	Ι	Power Supply 1.8V to 3.6V
3	DATA	I/O	Data input to be transmitted or Data pin to access the embedded EEPROM
4	GND	I	Ground
5	NC		Connect to GND
6	CLK	I	Clock pin to access the embedded EEPROM
7	GND	I	Ground
8	NC		Connect to GND




3. Typical Performance Characteristics



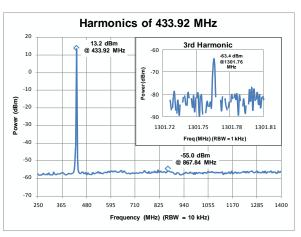
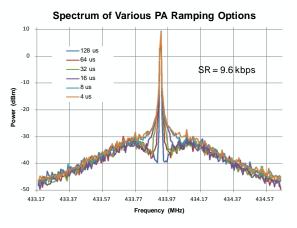
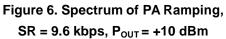
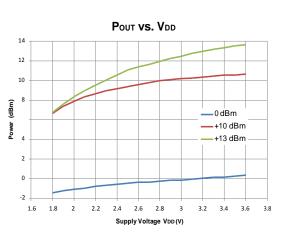
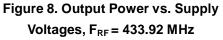






Figure 4. Harmonics of 433.92 MHz, P_{OUT} = +13 dBm

4. Typical Application Schematics



Figure 9: Typical Application Schematic

5. Functional Descriptions

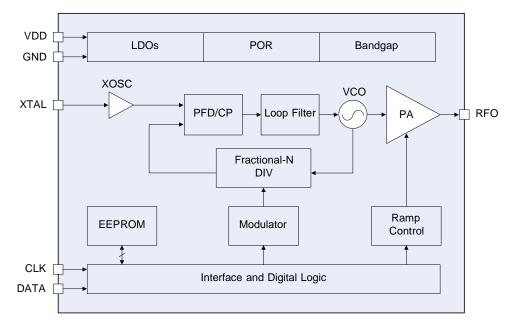


Figure 11. RFM110 Functional Block Diagram

5.1 Overview

The RFM110 is an ultra low-cost, highly flexible, high performance, single-chip OOK transmitter for various 240 to 480 MHz wireless applications. It is part of the CMOSTEK NextGenRF[™] family, which includes a complete line of transmitters, receivers and transceivers. The chip is optimized for the low system cost, low power consumption, battery powered application with its highly integrated and low power design.

The functional block diagram of the RFM110 is shown in Figure 11. The RFM110 is based on direct synthesis of the RF frequency, and the frequency is generated by a low-noise fractional-N frequency synthesizer. It uses a 1-pin crystal oscillator circuit with the required crystal load capacitance integrated on-chip to minimize the number of external components. Every analog block is calibrated on each Power-on Reset (POR) to the reference voltage generated by Bandgap. The calibration can help the chip to finely work under different temperatures and supply voltages. The RFM110 requires only 1 wire for the external MCU or encoder to send in the data and control the transmission. The input data will be modulated and sent out by a highly efficient PA which output power can be configured from -10 to +13 dBm in 1 dB step size. RF Frequency, PA output power and other product features can be programmed into the embedded EEPROM by the RFPDK and USB Programmer. This saves the cost and simplifies the product development and manufacturing effort. Alternatively, in stock products of 315/433.92 MHz are available for immediate demands with no need of EEPROM programming. The RFM110 operates from 1.8 to 3.6 V so that it can finely work with most batteries to their useful power limits. It only consumes 12.4 mA when transmitting +10 dBm power under 3.3 V supply voltage.

5.2 Modulation, Frequency and Symbol Rate

The RFM110 supports OOK modulation with the symbol rate up to 30 kbps. It continuously covers the frequency range from 240 to 480 MHz, including the license free ISM frequency band around 315 MHz and

433.92 MHz. The device contains a high spectrum purity low power fractional-N frequency synthesizer with output frequency resolution better than 198 Hz. See Table 9 for the modulation, frequency and symbol rate specifications.

Parameter	Value	Unit
Modulation	OOK	-
Frequency	240 to 480	MHz
Frequency Resolution	198	Hz
Symbol Rate	0.5 to 30	kbps

Table 9. Modulation, Frequency and Symbol Rate

5.3 Embedded EEPROM and RFPDK

The RFPDK (RF Products Development Kit) is a very user-friendly software tool delivered for the user configuring the RFM110 in the most intuitional way. The user only needs to fill in/select the proper value of each parameter and click the "Burn" button to complete the chip configuration. No register access and control is required in the application program. See Figure 12 for the accessing of the EEPROM and Table 10 for the summary of all the configurable parameters of the RFM110 in the RFPDK.

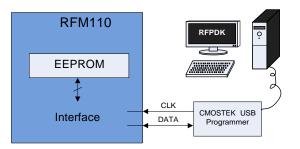


Figure 12. Accessing Embedded EEPROM

For more details of the CMOSTEK USB Programmer and the RFPDK, please refer to "AN103 CMT2110A/2210A One-Way RF Link Development Kits User's Guide". For the detail of RFM110 configurations with the RFPDK, please refer to "AN102 CMT2110A Configuration Guideline".

Category	Parameters	Descriptions	Default	Mode
	Frequency	To input a desired transmitting radio frequency in the range from 240 to 480 MHz.	433.92 MHz	Basic Advanced
RF Settings	Tx Power	To select a proper transmitting output power from -10 dBm to +14 dBm, 1 dBm margin is given above +13 dBm.	+13 dBm	Basic Advanced
	Xtal Cload	On-chip XOSC load capacitance options: from 10 to 22 pF.	15 pF	Basic Advanced
	PA Ramping	To control PA output power ramp up/down time, options are 0 and 2^n us (n from 0 to 10).	0 us	Advanced
Tronomitting	Start by	Start condition of a transmitting cycle, by Data Pin Rising/Falling Edge.	Data Pin Rising Edge	Advanced
Transmitting Settings	Stop by	Stop condition of a transmitting cycle, by Data Pin Holding Low for 20 to 90 ms.	Data Pin Holding Low for 20 ms	Advanced

Table 10. Configurable Parameters in RFPDK

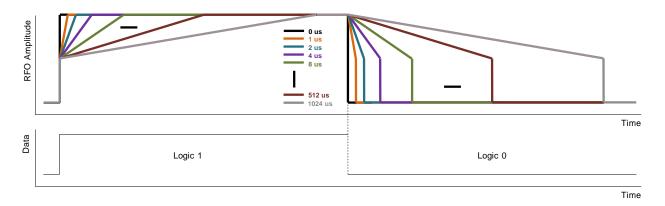
5.4 Power Amplifier

A highly efficient single-ended Power Amplifier (PA) is integrated in the RFM110 to transmit the modulated signal out. The output power of the PA can be configured by the user within the range from -10 dBm to +13 dBm in 1 dB step size using the CMOSTEK USB Programmer and RFPDK.

5.5 PA Ramping

When the PA is switched on or off quickly, its changing input impedance momentarily disturbs the VCO output frequency. This process is called VCO pulling, and it manifests as spectral splatter or spurs in the output spectrum around the desired carrier frequency. By gradually ramping the PA on and off, PA transient spurs are minimized. The RFM110 has built-in PA ramping configurability with options of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 us, as shown in Figure 13. When the option is set to "0", the PA output power will ramp up to its configured value in the shortest possible time. The ramp down time is identical to the ramp up time in the same configuration.

CMOSTEK recommends that the maximum symbol rate should be no higher than 1/2 of the PA ramping "rate", as shown in the formula below:


$$SR_{Max} \le 0.5 * \left(\frac{1}{t_{RAMP}}\right)$$

In which the PA ramping "rate" is given by $(1/t_{RAMP})$. In other words, by knowing the maximum symbol rate in the application, the PA ramping time can be calculated by:

$$t_{\text{RAMP}} \le 0.5 * (\frac{1}{\text{SR}_{\text{MAX}}})$$

The user can select one of the values of the t_{RAMP} in the available options that meet the above requirement. If somehow the t_{RAMP} is set to be longer than "0.5 * (1/SR_{Max})", it will possibly bring additional challenges to the OOK demodulation of the Rx device. For more detail of calculating t_{RAMP} , please refer to "AN102 CMT2110A Configuration Guideline".

Figure 13. PA Ramping Time

5.6 Working States and Control Interface

The RFM110 has following 4 different working states: SLEEP, XO-STARTUP, TUNE and TRANSMIT.

SLEEP

When the RFM110 is in the SLEEP state, all the internal blocks are turned off and the current consumption is minimized to 20 nA typically. The 1-wire interface is ready to sense a valid rising or falling edge on DATA pin to start a transmitting cycle.

XO-STARTUP

After the RFM110 received the valid control signal, it will go into the XO-STARTUP state, and the internal XO starts to work. The user has to wait for the t_{XTAL} to allow the XO to get stable. The t_{XTAL} is to a large degree crystal dependent. A typical value of t_{XTAL} is provided in the Table 11.

TUNE

The frequency synthesizer will tune the RFM110 to the desired frequency in the time t_{TUNE} . The PA can be turned on to transmit the incoming data only after the TUNE state is done, before that the incoming data (Don't Care shown in Figure 14 and 15) will not be transmitted.

TRANSMIT

The RFM110 starts to modulate and transmit the data coming from the DATA pin. After the DATA pin is driven

to low for the time t_{STOP} (can be configured from 20 to 90 ms in 10 ms step size through the RFPDK), the transmission will be ended and the RFM110 will go back to the SLEEP state, waiting for the next transmitting cycle.

The transmission can be enabled by either "DATA Pin Rising Edge" or "DATA Pin Falling Edge". See Table 11 and Figure 14, 15 for the timing requirement of each working state in the 2 different modes.

Table 11.Timing in Different Working States

Parameter	Symbol	Min	Тур	Max	Unit
XTAL Startup Time ^[1]	t _{XTAL}		400		us
Time to Tune to Desired Frequency	t _{TUNE}		370		us
Hold Time After Rising Edge	t _{HOLD}	10			ns
Time to Stop The Transmission ^[2]	t _{STOP}	20		90	ms
Notes:					
[1]. This parameter is to a large degree crystal dependent					
[2]. Configurable from 20 to 90 ms in 10 ms step size					

5.6.1 Tx Enabled by DATA Pin Rising Edge

As shown in the Figure 14, once the RFM110 detects a rising edge on the DATA pin, it goes into the XO-STARTUP state. The user has to pull the DATA pin high for at least 10 ns (t_{HOLD}) after detecting the rising edge, as well as wait for the sum of t_{XTAL} and t_{TUNE} before sending any useful information (data to be transmitted) into the chip on the DATA pin. The logic state of the DATA pin is "don't' care" from the end of t_{HOLD} till the end of t_{TUNE} . In the TRANSMIT state, PA sends out the input data after they are modulated. The user has to pull the DATA pin low for t_{STOP} in order to end the transmission.

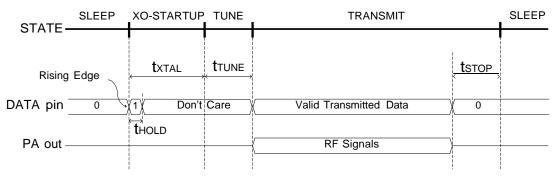


Figure 14. Transmission Enabled by DATA Pin Rising Edge

5.6.2 Tx Enabled by DATA Pin Falling Edge

As shown in the Figure 15, once the RFM110 detects a falling edge on the DATA pin, it goes into XO-STARTUP state and the XO starts to work. During the XO-STARTUP state, the DATA pin needs to be pulled low. After the XO is settled, the RFM110 goes to the TUNE state. The logic state of the DATA pin is "don't' care" during the TUNE state. In the TRANSMIT state, PA sends out the input data after they are modulated. The user

has to pull the DATA pin low for t_{STOP} in order to end the transmission. Before starting the next transmit cycle, the user has to pull the DATA pin back to high.

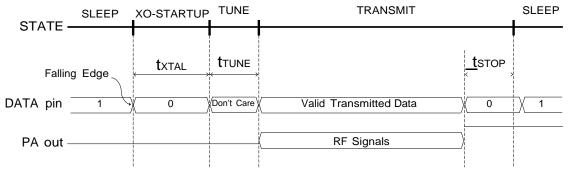
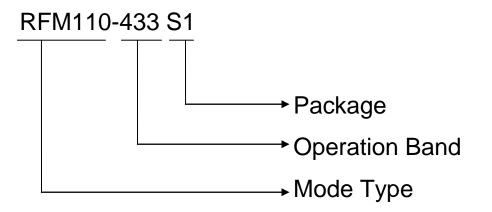



Figure 15. Transmission Enabled by DATA Pin Falling Edge

6. Ordering Information

P/N: RFM110-315S1

RFM110 module at 315MHz band,SMD Package

P/N: RFM110-433S1

RFM110 module at 433MHz band ,SMD Package

7. Package Outline

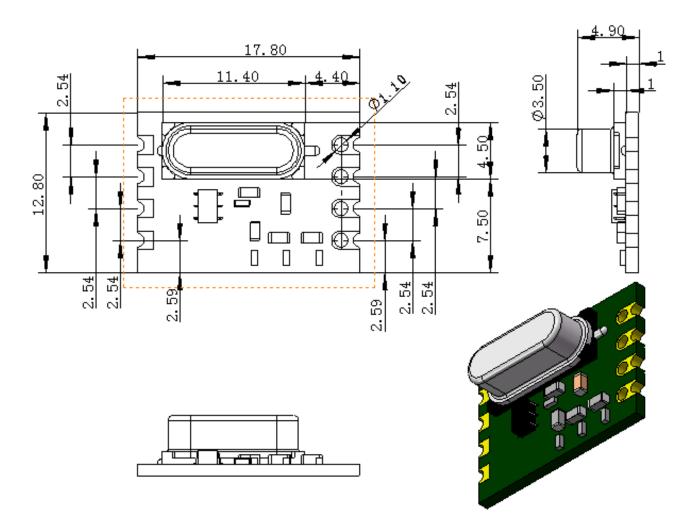


Figure 18 S2 Package Outline Drawing

8. Contact Information

HOPE MICROELECTRONICS CO., LTD

Add: 2/F, Building 3, Pingshan Private Enterprise Science and Technology Park, Lishan Road, XiLi Town, Nanshan District, Shenzhen, Guangdong, China Tel: 86-755-82973805 Fax: 86-755-82973550 Email: <u>sales@hoperf.com</u> Website: <u>http://www.hoperf.com</u> <u>http://www.hoperf.cn</u>

	This document may contain preliminary information and is subject to
	change by Hope Microelectronics without notice. Hope Microelectronics
	assumes no responsibility or liability for any use of the information
	contained herein. Nothing in this document shall operate as an express or
HOPE MICROELECTRONICS CO., LTD	implied license or indemnity under the intellectual property rights of Hope
Add: 2/F, Building 3, Pingshan Private	Microelectronics or third parties. The products described in this document
Enterprise Science and Technology	are not intended for use in implantation or other direct life support
Park, Lishan Road, XiLi Town, Nanshan	applications where malfunction may result in the direct physical harm or
District, Shenzhen, Guangdong, China	injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT
Tel: 86-755-82973805	NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY
Fax: 86-755-82973550	OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS
Email: <u>sales@hoperf.com</u>	DOCUMENT.
Website: http://www.hoperf.com	
http://www.hoperf.cn	©2006, HOPE MICROELECTRONICS CO., LTD. All rights reserved.