

AM26LS31, AM26LS31C, AM26LS31I, AM26LS31M

SLLS114K - JANUARY 1979-REVISED JULY 2016

AM26LS31x Quadruple Differential Line Driver

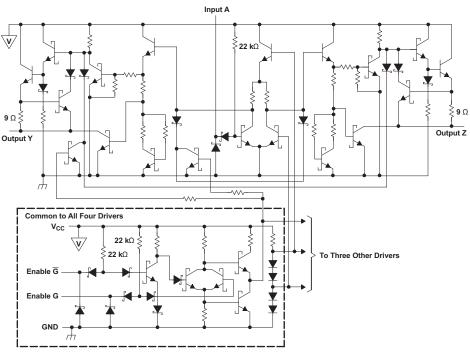
1 Features

- Meets or Exceeds the Requirements of ANSI TIA/EIA-422-B and ITU
- Operates From a Single 5-V Supply
- TTL-Compatible
- · Complementary Outputs
- High Output Impedance in Power-Off Conditions
- · Complementary Output-Enable Inputs
- Available MIL-PRF-38535-Qualified Options (M): All Parameters Are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

2 Applications

- Motor Encoders
- Field Transmitters: Pressure Sensors and Temperature Sensors
- · Military and Avionics Imaging
- Temperature Sensors or Controllers Using Modbus

3 Description


The AM26LS31 family of devices is a quadruple complementary-output line driver designed to meet the requirements of ANSI TIA/EIA-422-B and ITU (formerly CCITT) Recommendation V.11. The 3-state outputs have high-current capability for driving balanced lines such as twisted-pair or parallel-wire transmission lines, and they are in the high-impedance state in the power-off condition. The enable function is common to all four drivers and offers the choice of an active-high or active-low enable (G, \overline{G}) input. Low-power Schottky circuitry reduces power consumption without sacrificing speed.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
AM26LS31MFK	LCCC (20)	8.89 mm × 8.89 mm
AM26LS31MJ	CDIP (16)	19.60 mm × 6.92 mm
AM26LS31MW	CFP (16)	10.30 mm × 6.73 mm
AM26LS31CD	SOIC (16)	9.90 mm × 3.91 mm
AM26LS31CDB	SSOP (16)	6.20 mm × 5.30 mm
AM26LS31CN	PDIP (16)	19.30 mm × 6.35 mm
AM26LS31xNS	SO (16)	10.30 mm × 5.30 mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Schematic (Each Driver)

All resistor values are nominal

Copyright © 2016, Texas Instruments Incorporated

Table of Contents

1	Features 1	8.3 Feature Description9
2	Applications 1	8.4 Device Functional Modes10
3	Description 1	9 Application and Implementation 11
4	Revision History2	9.1 Application Information11
5	Pin Configuration and Functions3	9.2 Typical Application11
6	Specifications4	10 Power Supply Recommendations 13
•	6.1 Absolute Maximum Ratings	11 Layout 13
	6.2 ESD Ratings	11.1 Layout Guidelines13
	6.3 Recommended Operating Conditions	11.2 Layout Example13
	6.4 Thermal Information	12 Device and Documentation Support 14
	6.5 Electrical Characteristics	12.1 Documentation Support
	6.6 Switching Characteristics – AM26LS31 5	12.2 Related Links 14
	6.7 Switching Characteristics – AM26LS31M 5	12.3 Receiving Notification of Documentation Updates 14
	6.8 Typical Characteristics	12.4 Community Resources14
7	Parameter Measurement Information 8	12.5 Trademarks14
8	Detailed Description9	12.6 Electrostatic Discharge Caution14
•	8.1 Overview	12.7 Glossary14
	8.2 Functional Block Diagram	13 Mechanical, Packaging, and Orderable Information14

4 Revision History

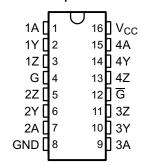
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

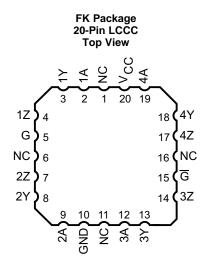
Changes from Revision J (January 2014) to Revision K

Page

- Added Applications section, the Device Information table, ESD Ratings table, Feature Description section, Device
 Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout
 section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section...... 1

Changes from Revision I (February 2006) to Revision J


Page


Updated document to new TI data sheet format - no specification changes.
 Deleted Ordering Information table.
 Updated Features.

5 Pin Configuration and Functions

D, DB, N , NS, J, or W Package SOIC, SSOP, PDIP, SO, CDIP, or CFP Top View

Pin Functions

	PIN			
NAME	SOIC, SSOP, PDIP, SO, CDIP, or CFP	LCCC	1/0	DESCRIPTION
1A	1	2	I	Logic Data Input to RS422 Driver number 1
1Y	2	3	0	RS-422 Data Line (Driver 1)
1Z	3	4	0	RS-422 Data Line (Driver 1)
G	4	5	I	Driver Enable (active high)
G	12	15	I	Driver Enable (active Low)
2A	7	9	I	Logic Data Input to RS422 Driver number 2
2Y	6	8	0	RS-422 Data Line (Driver 2)
2Z	5	7	0	RS-422 Data Line (Driver 2)
3A	9	12	I	Logic Data Input to RS422 Driver number 3
3Y	10	13	0	RS-422 Data Line (Driver 3)
3Z	11	14	0	RS-422 Data Line (Driver 3)
4A	15	19	I	Logic Data Input to RS422 Driver number 4
4Y	14	18	0	RS-422 Data Line (Driver 4)
4Z	13	17	0	RS-422 Data Line (Driver 4)
VCC	8	20	_	Power Input. Connect to 5-V Power Source.
GND	16	10	_	Device Ground Pin

Copyright © 1979–2016, Texas Instruments Incorporated

Submit Documentation Feedback

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V_{CC}	Supply voltage ⁽²⁾		7	V
VI	Input voltage		7	V
	Output off-state voltage		5.5	V
	Lead temperature 1,6 mm (1/16 in) from case for 10 s		260	°C
	Lead temperature 1,6 mm (1/16 in) from case for 60 s J package		300	°C
T _{stq}	Storage temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values, except differential output voltage V_{OD}, are with respect to network GND.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	V
	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V _{CC} Supply voltage	Cumply yeltogo	AM26LS31C	4.75	5	5.25	V
	Supply voltage	AM26LS31M	4.5	5	5.5	V
V_{IH}	High-level input voltage		2			V
V_{IL}	Low-level input voltage				0.8	V
I _{OH}	High-level output current				-20	mA
I _{OL}	Low-level output current				20	mA
		AM26LS31C	0		70	
T_A	Operating free-air temperature	AM26LS31I	-40		85	°C
		AM26LS31M	-55		125	

6.4 Thermal Information

		AM26LS31x				
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DB (SSOP)	N (PDIP)	NS (SO)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance (2)	73	82	67	64	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	38.1	-	_	32.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	34.7	-	_	36.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	7.1	-	_	4.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	34.4	_	_	36.5	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Submit Documentation Feedback

Copyright © 1979–2016, Texas Instruments Incorporated

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)(1)

	PARAMETER	TEST	CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{IK}	Input clamp voltage	$V_{CC} = MIN, I_I = -18$	mA			-1.5	V
V_{OH}	High-level output voltage	$V_{CC} = MIN, I_{OH} = -2$	0 mA	2.5			V
V _{OL}	Low-level output voltage	$V_{CC} = MIN, I_{OL} = 20$	mA			0.5	V
	Off-state (high-impedance-state)	N/ NAINI	V _O = 0.5 V			-20	4
I _{OZ}	output current	$V_{CC} = MIN,$	V _O = 2.5 V			20	μΑ
II	Input current at maximum input voltage	$V_{CC} = MAX, V_I = 7 V$	1			0.1	mA
I _{IH}	High-level input current	$V_{CC} = MAX, V_I = 2.7$	V			20	μА
I _{IL}	Low-level input current	$V_{CC} = MAX, V_I = 0.4$	V			-0.36	mA
Ios	Short-circuit output current ⁽³⁾	$V_{CC} = MAX$		-30		-150	mA
I _{CC}	Supply current	V _{CC} = MAX, all outp	uts disabled		32	80	mA

- (1) For C-suffix devices, V_{CC} min = 4.75 V and V_{CC} max = 5.25 V. For M-suffix devices, V_{CC} min = 4.5 V and V_{CC} max = 5.5 V.
 (2) All typical values are at V_{CC} = 5 V and T_A = 25°C.
 (3) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

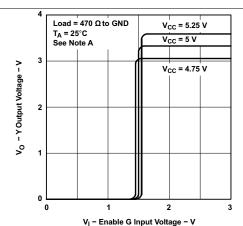
6.6 Switching Characteristics - AM26LS31

 $T_A = 25$ °C, $V_{CC} = 5$ V (see Figure 11)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 30 pF, S1 and S2 open			14	20	
t _{PHL}	Propagation delay time, high- to low-level output				14	20	ns
t _{PZH}	Output enable time to high level	0 20 - 5	R _L = 75 Ω		25	40	
t _{PZL}	Output enable time to low level	$C_L = 30 \text{ pF}$	R _L = 180 Ω		37	45	ns
t _{PHZ}	Output disable time from high level	0 40 7 5 04 - 7 4	00 -11		21	30	
t _{PLZ}	Output disable time from low level	C _L = 10 pF, S1 and S2 closed			23	35	ns
t _{SKEW}	Output-to-output skew	C _L = 30 pF, S1 and S2 open			1	6	ns

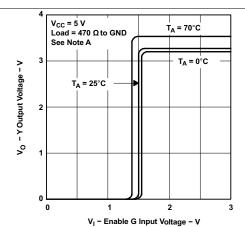
6.7 Switching Characteristics – AM26LS31M

 $T_A = 25$ °C, $V_{CC} = 5$ V (see Figure 11)


	PARAMETER	TEST CON	IDITIONS	MIN MAX	UNIT
t _{PLH}	Propagation delay time, low- to high- level output	C _L = 30 pF, S1 and S2 open		30	
t _{PHL}	Propagation delay time, high- to low- level output			30	ns
t _{PZH}	Output enable time to high level	0 20 - 5	R _L = 75 Ω	60	
t _{PZL}	Output enable time to low level	$C_L = 30 \text{ pF}$	R _L = 180 Ω	68	ns
t _{PHZ}	Output disable time from high level	C 10 pF C1 and C2 a	loood	45	
t _{PLZ}	Output disable time from low level	C _L = 10 pF, S1 and S2 closed		53	ns
t _{SKEW}	Output-to-output skew	C _L = 30 pF, S1 and S2 o	C _L = 30 pF, S1 and S2 open		ns

Submit Documentation Feedback Copyright © 1979-2016, Texas Instruments Incorporated

Product Folder Links: AM26LS31 AM26LS31M



6.8 Typical Characteristics

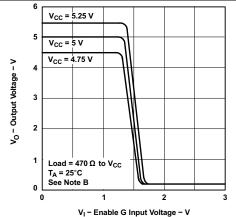
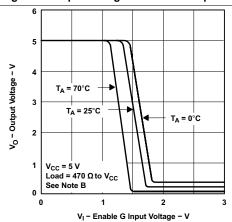
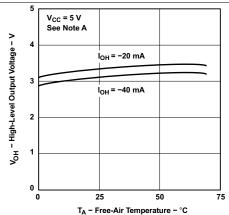

A. The A input is connected to $V_{\mbox{\footnotesize CC}}$ during testing of the Y outputs and to ground during testing of the Z outputs.

Figure 1. Output Voltage vs Enable G Input Voltage



A. The A input is connected to V_{CC} during testing of the Y outputs and to ground during testing of the Z outputs.

Figure 2. Output Voltage vs Enable G Input Voltage



B. The A input is connected to ground during testing of the Y outputs and to V_{CC} during testing of the Z outputs.

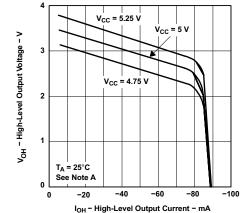
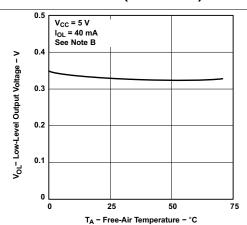

B. The A input is connected to ground during testing of the Y outputs and to V_{CC} during testing of the Z outputs.

Figure 3. Output Voltage vs Enable G Input Voltage Figure 4. Output Voltage vs Enable G Input Voltage

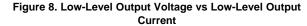
A. The A input is connected to $V_{\mbox{\footnotesize CC}}$ during testing of the Y outputs and to ground during testing of the Z outputs.

Figure 5. High-Level Output Voltage vs Free-Air **Temperature**



A. The A input is connected to V_{CC} during testing of the Y outputs and to ground during testing of the Z outputs.

Figure 6. High-Level Output Voltage vs High-Level Output Current


Typical Characteristics (continued)

B. The A input is connected to ground during testing of the Y outputs and to V_{CC} during testing of the Z outputs.

 $\label{eq:local_local_local} I_{OL} - Low-Level Output Current - mA$ B. The A input is connected to ground during testing of the Y outputs and to V_{CC} during testing of the Z outputs.

Figure 7. Low-Level Output Voltage vs Free-Air Temperature

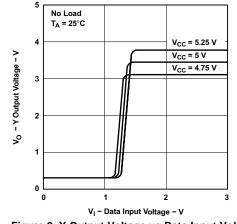


Figure 9. Y Output Voltage vs Data Input Voltage

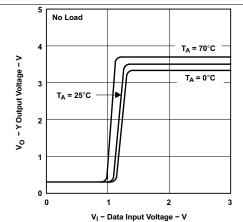
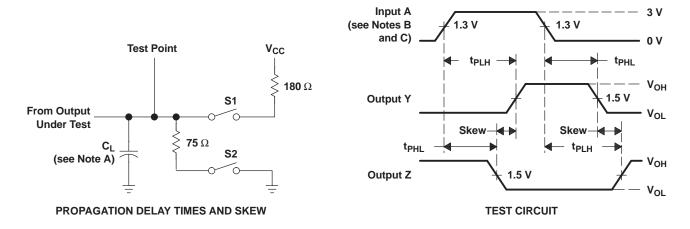
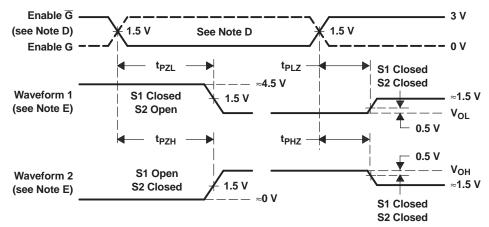




Figure 10. Y Output Voltage vs Data Input Voltage

7 Parameter Measurement Information

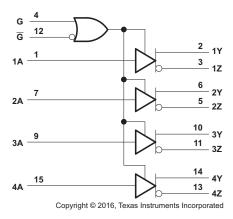
ENABLE AND DISABLE TIME WAVEFORMS

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50~\Omega$, $t_f \leq 15$ ns, $t_f \leq 6$ ns.
- C. When measuring propagation delay times and skew, switches S1 and S2 are open.
- D. Each enable is tested separately.
- E. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

Figure 11. Test Circuit and Voltage Waveforms

Detailed Description


Overview

The AM26LS31x differential bus transmitter is a monolithic integrated circuit designed for unidirectional data communication on transmission lines. It is designed for balanced transmission lines and meets ANSI Standard EIA/TIA-422-B and ITU Recommendation V.11.

The AM26LS31x has a four 3-state differential line drivers that operate from a single 5-V power supply. The driver also integrates active-high and active-low enables for precise device control.

The driver is designed to handle loads of a minimum of ±30 mA of sink or source current. The driver features positive- and negative-current limiting for protection from line fault conditions.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Complementary Output-Enable Inputs

The AM26LS31x can be configured using the G and \overline{G} logic inputs to control transmitter outputs. Setting either G to a logic HIGH or \overline{G} to an logic LOW enables the transmitter outputs. If G is set to logic LOW and \overline{G} is set to logic HIGH, the transmitter outputs are disabled. See Table 1 for a complete truth table.

8.3.2 High Output Impedance in Power-Off Conditions

When the AM26LS31x transmitter outputs are disabled using G and \overline{G} , the outputs are set to a high impedance state.

8.3.3 Complementary Outputs

The AM26LS31x is the driver half of a pair of devices, with the AM26LS32 being the complementary receiver. TI recommends using these devices together for optimal performance, but any RS-422 compliant receive must ensure proper RS-422 communication and logic level translation.

Copyright © 1979-2016, Texas Instruments Incorporated

8.4 Device Functional Modes

Table 1 lists the functional modes of the AM26LS31.

Table 1. Function Table⁽¹⁾ (Each Driver)

INPUT	ENA	BLES	OUTPUTS	
Α	G	G	Y	Z
Н	Н	Χ	Н	٦
L	Н	Χ	L	Н
Н	Χ	L	Н	L
L	Χ	L	L	Н
X	L	Н	Z	Z

⁽¹⁾ H = high level, L = low level, X = irrelevant, Z = high impedance (off)

Submit Documentation Feedback

Copyright © 1979–2016, Texas Instruments Incorporated

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

When designing a system that uses drivers, receivers, and transceivers that comply with RS-422 or RS-485, proper cable termination is essential for highly reliable applications with reduced reflections in the transmission line. Because RS-422 allows only one driver on the bus, if termination is used, it is placed only at the end of the cable near the last receiver. In general, RS-485 requires termination at both ends of the cable. Factors to consider when determining the type of termination usually are performance requirements of the application and the ever-present factor, cost. The different types of termination techniques discussed are unterminated lines, parallel termination, AC termination, and multipoint termination. Laboratory waveforms for each termination technique (except multipoint termination) illustrate the usefulness and robustness of RS-422 (and, indirectly, RS-485). Similar results can be obtained if 485-compliant devices and termination techniques are used. For laboratory experiments, 100 feet of 100-Ω, 24-AWG, twisted-pair cable (Bertek) was used. A single driver and receiver, TI AM26LS31 and AM26LS32C, respectively, were tested at room temperature with a 5-V supply voltage. Two plots per termination technique are shown. In each plot, the top waveform is the driver input and the bottom waveform is the receiver output. To show voltage waveforms related to transmission-line reflections, the first plot shows output waveforms from the driver at the start of the cable; the second plot shows input waveforms to the receiver at the far end of the cable.

9.2 Typical Application

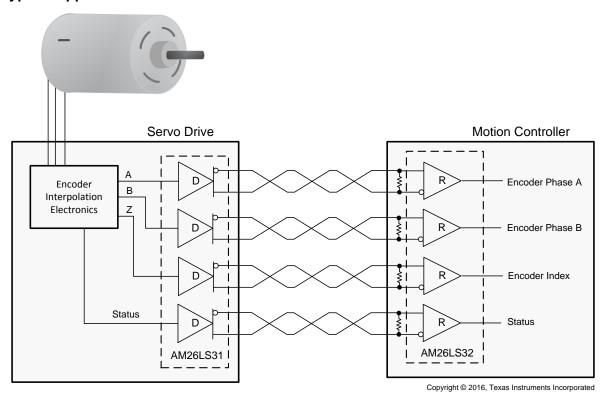


Figure 12. Encoder Application

Submit Documentation Feedback

Typical Application (continued)

9.2.1 Design Requirements

This example requires the following:

- 5-V power source
- RS-485 bus operating at 10 Mbps or less
- Connector that ensures the correct polarity for port pins

9.2.2 Detailed Design Procedure

Place the device close to bus connector to keep traces (stub) short to prevent adding reflections to the bus line.

If desired, add external fail-safe biasing to ensure 200 mV on the A-B port, if the drive is in high impedance state (see Failsafe in RS-485 data buses).

9.2.3 Application Curve

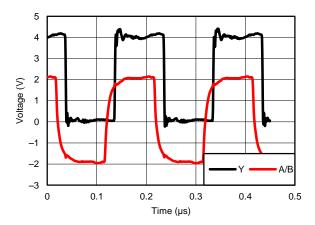


Figure 13. Differential 120- Ω Terminated Output Waveforms (Cat 5E Cable)

Submit Documentation Feedback

10 Power Supply Recommendations

Place a 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies.

11 Layout

11.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can often propagate into analog circuitry through the power supply of the circuit. Bypass capacitors are
 used to reduce the coupled noise by providing low impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If
 it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as
 opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.

11.2 Layout Example

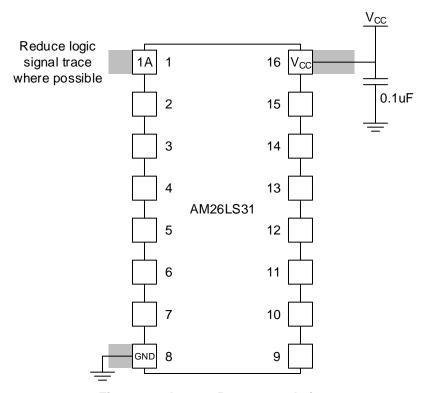


Figure 14. Layout Recommendation

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

Failsafe in RS-485 data buses (SLYT080)

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
AM26LS31	Click here	Click here	Click here	Click here	Click here
AM26LS31C	Click here	Click here	Click here	Click here	Click here
AM26LS31I	Click here	Click here	Click here	Click here	Click here
AM26LS31M	Click here	Click here	Click here	Click here	Click here

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

Submit Documentation Feedback

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-7802301M2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 7802301M2A AM26LS31 MFKB	Samples
5962-7802301MEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-7802301ME A AM26LS31MJB	Samples
5962-7802301MFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-7802301MF A AM26LS31MWB	Samples
5962-7802301Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type		5962- 7802301Q2A AM26LS31M	Samples
AM26LS31CD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	AM26LS31C	Samples
AM26LS31CDBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SA31C	Samples
AM26LS31CDBRE4	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	SA31C	Samples
AM26LS31CDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	AM26LS31C	Samples
AM26LS31CDG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	AM26LS31C	Samples
AM26LS31CDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	AM26LS31C	Samples
AM26LS31CDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	AM26LS31C	Samples
AM26LS31CDRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	AM26LS31C	Samples
AM26LS31CN	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	AM26LS31CN	Samples
AM26LS31CNSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	26LS31	Samples
AM26LS31INSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	26LS31	Samples

PACKAGE OPTION ADDENDUM

24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
AM26LS31MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 7802301M2A AM26LS31 MFKB	Samples
AM26LS31MJB	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-7802301ME A AM26LS31MJB	Samples
AM26LS31MWB	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-7802301MF A AM26LS31MWB	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

24-Aug-2018

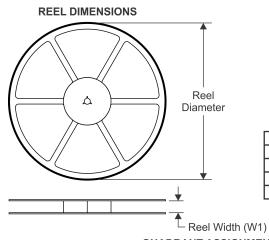
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF AM26LS31, AM26LS31M:

Catalog: AM26LS31

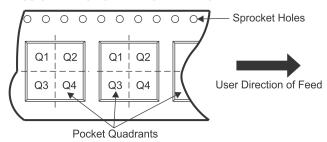
Military: AM26LS31M


NOTE: Qualified Version Definitions:

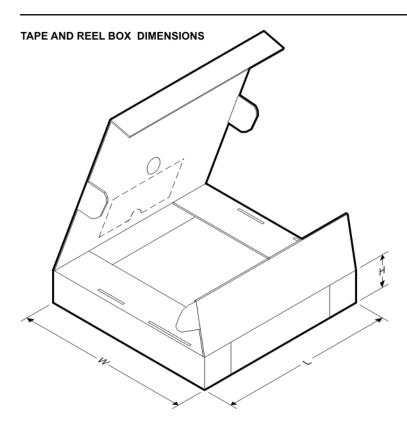
- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Oct-2016


TAPE AND REEL INFORMATION

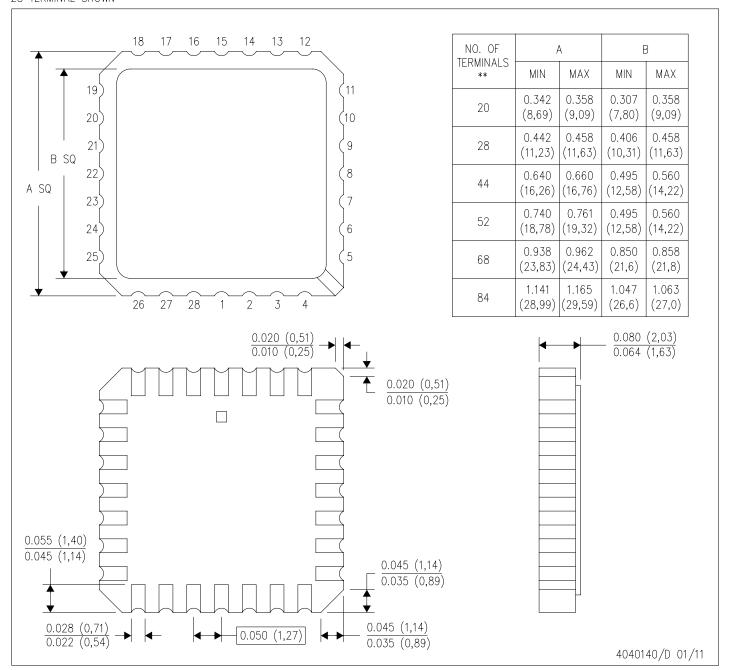
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
AM26LS31CDBR	SSOP	DB	16	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
AM26LS31CDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
AM26LS31CDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
AM26LS31CDRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
AM26LS31CDRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
AM26LS31INSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 5-Oct-2016


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
AM26LS31CDBR	SSOP	DB	16	2000	367.0	367.0	38.0
AM26LS31CDR	SOIC	D	16	2500	367.0	367.0	38.0
AM26LS31CDR	SOIC	D	16	2500	333.2	345.9	28.6
AM26LS31CDRG4	SOIC	D	16	2500	333.2	345.9	28.6
AM26LS31CDRG4	SOIC	D	16	2500	367.0	367.0	38.0
AM26LS31INSR	SO	NS	16	2000	367.0	367.0	38.0

FK (S-CQCC-N**)

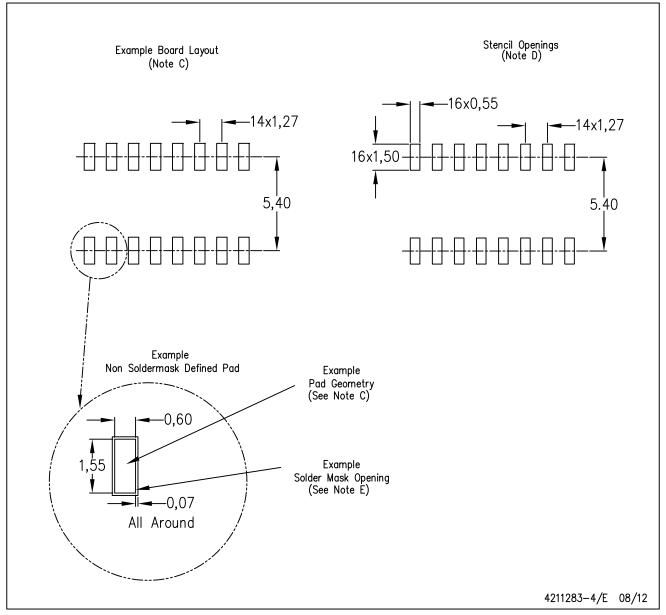
LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

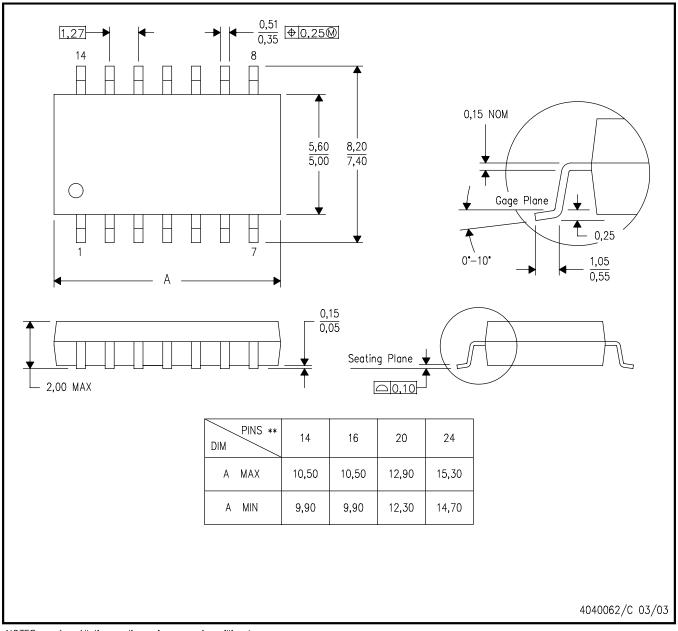


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

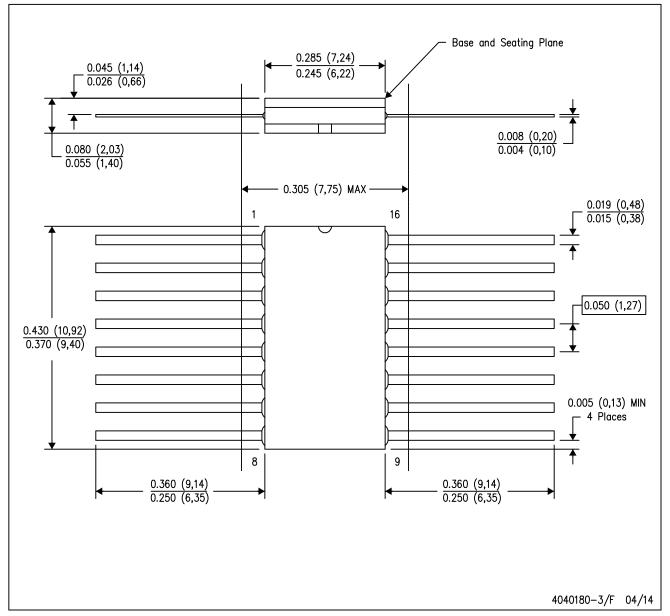


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE



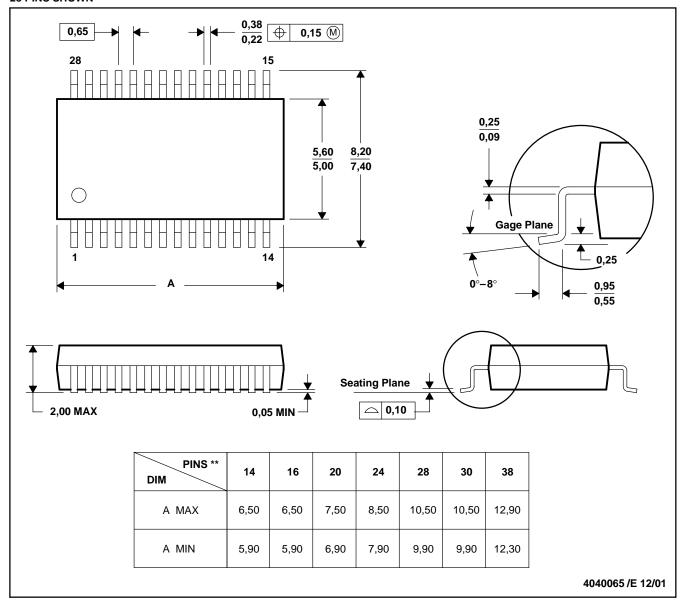
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

14 LEADS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.