
GENERAL PURPOSE TRANSISTORS

DESCRIPTION

The BC140 and BC141 are silicon planar epitaxial NPN transistors in TO-39 metal case. They are particularly designed for audio amplifiers and switching applications up to 1 A. The complementary PNP types are the BC160 and BC161.

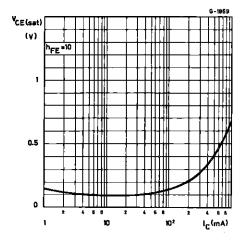
INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

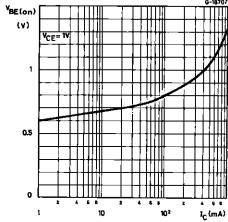
Symbol	Parameter	Val		
Symbol	Parameter	BC140	BC140 BC141	
V _{CBO}	Collector-base Voltage (I _E = 0)	80 100		V
V _{CEO}	Collector-emitter Voltage (I _B = 0) 40 60		60	V
V _{EBO}	Emitter-base Voltage (I _C = 0)	7		V
Ic	Collector Current	1		Α
Ι _Β	Base Current	0.1		А
P _{tot}	Total Power Dissipation at T _{amb} ≤ 45 °C	0.65		W
	at T _{case} ≤ 45 °C	3.7		W
T_{stg}	Storage Temperature	- 55 to 175		°C
Tj	Junction Temperature	175		

January 1989 1/3

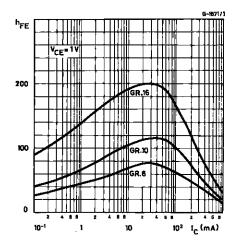
THERMAL DATA

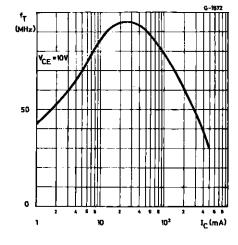

R _{th j-case}	Thermal Resistance Junction-case	Max	35	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	200	°C/W

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \, ^{\circ}C$ unless otherwise specified)

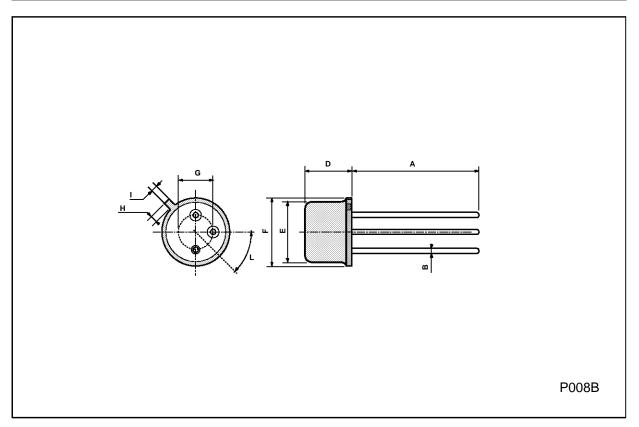

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cutoff Current (I _E = 0)	V _{CES} = 60 V V _{CES} = 60 V T _{amb} = 150 °C			100 100	nA μA
V _{(BR)CBO}	Collector-base Breakdown Voltage (I _E = 0)	I_C = 100 μ A for BC140 for BC141	80 100			> >
V _{(BR)CEO} *	Collector-emitter Breakdown Voltage (I _B = 0)	I _C = 30 mA for BC140 for BC141	40 60			>>
V _{(BR)EBO}	Emitter-base Breakdown Voltage (I _C = 0)	I _E = 100 μA	7			>
V _{CE(sat)} *	Collector-emitter Saturation Voltage	$I_{C} = 100 \text{ mA}$ $I_{B} = 10 \text{ mA}$ $I_{C} = 500 \text{ mA}$ $I_{B} = 50 \text{ mA}$ $I_{C} = 1 \text{ A}$ $I_{B} = 0.1 \text{ A}$		0.1 0.35 0.6	1	> >
V _{BE} *	Base-emitter Voltage	$I_C = 1 A$ $V_{CE} = 1 V$		1.25	1.8	V
h _{FE} *	DC Current Gain	$I_C = 100 \; \mu A \qquad V_{CE} = 1 \; V \\ \qquad \qquad$	40 40 63 100	75 28 40 90 140 63 100 160 26 15 20 30	250 100 160 250	
f _T	Transition Frequency	$I_C = 50 \text{ mA}$ $V_{CE} = 10 \text{ V}$	50			MHz
ССВО	Collector-base Capacitance	$I_E = 0$ $V_{CB} = 10 \text{ V}$ $f = 1 \text{ MHz}$		12	25	pF
ton	Turn-on Time	$I_C = 100 \text{ mA}$ $I_{B1} = 5 \text{ mA}$			250	ns
t _{off}	Turn-off Time	$I_C = 100 \text{ mA}$ $I_{B1} = I_{B2} = 5 \text{ mA}$			850	ns

^{*} Pused : pulse duration = 300 μs, duty cycle = 1 %.


Collector-emitter Saturation Voltage.


Base-emitter Voltage.

DC Curent Gain.



Transiition Frequency.

TO39 MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	12.7			0.500			
В			0.49			0.019	
D			6.6			0.260	
E			8.5			0.334	
F			9.4			0.370	
G	5.08			0.200			
Н			1.2			0.047	
ı			0.9			0.035	
L	45° (typ.)						

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

