

Gravity Arduino Analog Karbondioksit Sensörü (CO2)
- DFRobot

CO2 Sensor (Arduino compatiable) SKU:SEN0159

Contents

 [hide]

● 1 Introduction
● 2 Specification
● 3 Connecting Diagram
● 4 Tutorial
● 5 Calibration
● 6 Sample code

Introduction
"Greenhouse Effect" is melting the iceberg every minute,. By knowing the exact concentration of
CO2, we can do something to reduce the CO2 and to protect our earth. For that reason, a High
quality CO2 sensor is designed by DFRobot eningeer . This is the first CO2 sensor in

https://www.direnc.net/
https://www.direnc.net/arduino-analog-gaz-karbondioksit-co2-sensoru
https://www.direnc.net/arduino-analog-gaz-karbondioksit-co2-sensoru
https://www.dfrobot.com/product-540.html
https://www.dfrobot.com/wiki/index.php/CO2_Sensor_SKU:SEN0159#
https://www.dfrobot.com/wiki/index.php/CO2_Sensor_SKU:SEN0159#Introduction
https://www.dfrobot.com/wiki/index.php/CO2_Sensor_SKU:SEN0159#Specification
https://www.dfrobot.com/wiki/index.php/CO2_Sensor_SKU:SEN0159#Connecting_Diagram
https://www.dfrobot.com/wiki/index.php/CO2_Sensor_SKU:SEN0159#Tutorial
https://www.dfrobot.com/wiki/index.php/CO2_Sensor_SKU:SEN0159#Calibration
https://www.dfrobot.com/wiki/index.php/CO2_Sensor_SKU:SEN0159#Sample_code
https://www.dfrobot.com/category-85.html

opensource hardware market. The output voltage of the module falls as the concentration of the
CO2 increases. The potentiometer onboard is designed to set the threshold of voltage. Once the
CO2 concentration is high enough (voltage is lower than threshold), a digital signal (ON/OFF) will
be released.

● It has MG-811 gas sensor onboard which is highly sensitive to CO2 and less sensitive to
alcohol and CO, Low humidity&temperature dependency. All components have industrial
quality which means stability and reproducibility.

● Onboard heating circuit brings the best temperature for sensor to function. 5V power
input will be boosted to 6V for heating.

● This sensor has an onboard conditioning circuit for amplifying output signal.

● External power supply (7~12V) is necessary to supply the
microcontroller board when you using this CO2 sensor module.

●
● This module is an electrochemical sensor, you need to calibrate it

before actual measurement.

Specification
● Operating voltage:5V
● Interface:Analog
● One digital output
● High quality connector
● Immersion gold surface
● Onboard heating circuit
● Size:32x42mm

Connecting Diagram

Tutorial
How to use this module?

It is very easy.

You need to set potentiometer onboard to the threshold value. Just make the red led turn off.
With the CO2 concentration is enough high to make the sensor output voltage higher than
threshold value,the led will be turned on. If you connect a buzzer to the module(right side), you
will hear the alarm.

Calibration
This module is an electrochemistry sensor, you should calibrate it before actual measurement.

You should provide stable power to this module, and the sensor will heating while working.
Please put this module into the area where the air is clean. After continuous working about 48
hours, you can measure the output voltage of this module. Then modify the defination in the code
with the voltage value(unit:V) divide by 8.5.

#define ZERO_POINT_VOLTAGE (voltage/8.5)

Sample code
/*******************Demo for MG-811 Gas Sensor Module

V1.1*****************************

Author: Tiequan Shao: tiequan.shao@sandboxelectronics.com

 Peng Wei: peng.wei@sandboxelectronics.com

Lisence: Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

Note: This piece of source code is supposed to be used as a demostration ONLY. More

 sophisticated calibration is required for industrial field application.

 Sandbox Electronics 2012-05-31

*************/

/************************Hardware Related

Macros************************************/

#define MG_PIN (A0) //define which analog input channel you

are going to use

#define BOOL_PIN (2)

#define DC_GAIN (8.5) //define the DC gain of amplifier

/***********************Software Related

Macros************************************/

#define READ_SAMPLE_INTERVAL (50) //define how many samples you are

going to take in normal operation

#define READ_SAMPLE_TIMES (5) //define the time interval(in

milisecond) between each samples in

 //normal operation

/**********************Application Related

Macros**********************************/

//These two values differ from sensor to sensor. user should derermine this value.

#define ZERO_POINT_VOLTAGE (0.220) //define the output of the sensor in

volts when the concentration of CO2 is 400PPM

#define REACTION_VOLTGAE (0.030) //define the voltage drop of the

sensor when move the sensor from air into 1000ppm CO2

/*****************************Globals***********************************

************/

float CO2Curve[3] =

{2.602,ZERO_POINT_VOLTAGE,(REACTION_VOLTGAE/(2.602-3))};

 //two points are taken from the curve.

 //with these two points, a line is formed which is

 //"approximately equivalent" to the original curve.

 //data format:{ x, y, slope}; point1: (lg400,

0.324), point2: (lg4000, 0.280)

 //slope = (reaction voltage) / (log400 –log1000)

void setup()

{

 Serial.begin(9600); //UART setup, baudrate = 9600bps

 pinMode(BOOL_PIN, INPUT); //set pin to input

 digitalWrite(BOOL_PIN, HIGH); //turn on pullup resistors

 Serial.print("MG-811 Demostration\n");

}

void loop()

{

 int percentage;

 float volts;

 volts = MGRead(MG_PIN);

 Serial.print("SEN0159:");

 Serial.print(volts);

 Serial.print("V ");

 percentage = MGGetPercentage(volts,CO2Curve);

 Serial.print("CO2:");

 if (percentage == -1) {

 Serial.print("<400");

 } else {

 Serial.print(percentage);

 }

 Serial.print("ppm");

 Serial.print("\n");

 if (digitalRead(BOOL_PIN)){

 Serial.print("=====BOOL is HIGH======");

 } else {

 Serial.print("=====BOOL is LOW======");

 }

 Serial.print("\n");

 delay(500);

}

/***************************** MGRead

Input: mg_pin - analog channel

Output: output of SEN-000007

Remarks: This function reads the output of SEN-000007

*************/

float MGRead(int mg_pin)

{

 int i;

 float v=0;

 for (i=0;i<READ_SAMPLE_TIMES;i++) {

 v += analogRead(mg_pin);

 delay(READ_SAMPLE_INTERVAL);

 }

 v = (v/READ_SAMPLE_TIMES) *5/1024 ;

 return v;

}

/***************************** MQGetPercentage

Input: volts - SEN-000007 output measured in volts

 pcurve - pointer to the curve of the target gas

Output: ppm of the target gas

Remarks: By using the slope and a point of the line. The x(logarithmic value of ppm)

 of the line could be derived if y(MG-811 output) is provided. As it is a

 logarithmic coordinate, power of 10 is used to convert the result to

non-logarithmic

 value.

*************/

int MGGetPercentage(float volts, float *pcurve)

{

 if ((volts/DC_GAIN)>=ZERO_POINT_VOLTAGE) {

 return -1;

 } else {

 return pow(10, ((volts/DC_GAIN)-pcurve[1])/pcurve[2]+pcurve[0]);

 }

}

