Is Now Part of

ON Semiconductor ${ }^{\circledR}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

[^0]
Single-Channel: 6N135, 6N136, HCPL2503, HCPL4502 Dual-Channel: HCPL2530, HCPL2531 High Speed Transistor Optocouplers

Features

■ High speed -1 MBit/s
■ Superior CMR - 10kV/ $\mu \mathrm{s}$
■ Dual-Channel HCPL2530/HCPL2531
■ Double working voltage - 480V RMS

- CTR guaranteed $0-70^{\circ} \mathrm{C}$

■ U.L. recognized (File \# E90700)

Applications

- Line receivers

■ Pulse transformer replacement
■ Output interface to CMOS-LSTTL-TTL
■ Wide bandwidth analog coupling

Description

The HCPL4502, HCPL2503, 6N135, 6N136, HCPL2530 and HCPL2531 optocouplers consist of an AlGaAs LED optically coupled to a high speed photodetector transistor.

A separate connection for the bias of the photodiode improves the speed by several orders of magnitude over conventional phototransistor optocouplers by reducing the base-collector capacitance of the input transistor.
An internal noise shield provides superior common mode rejection of $10 \mathrm{kV} / \mu \mathrm{s}$. An improved package allows superior insulation permitting a 480 V working voltage compared to industry standard of 220 V .

Schematics

6N135, 6N136, HCPL2503, HCPL4502

Package Outlines

HCPL2530/HCPL2531
Pin 7 is not connected in
Part Number HCPL4502

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Condition	Value	Units
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-55 to +125	${ }^{\circ} \mathrm{C}$
ToPR	Operating Temperature		-55 to +100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature		260 for 10 sec	${ }^{\circ} \mathrm{C}$
EMITTER				
I_{F} (avg)	DC/Average Forward Input Current Each Channel ${ }^{(1)}$		25	mA
$\mathrm{I}_{\mathrm{F}}(\mathrm{pk})$	Peak Forward Input Current Each Channel ${ }^{(2)}$	50\% duty cycle, $1 \mathrm{~ms} \mathrm{P.W}$.	50	mA
I_{F} (trans)	Peak Transient Input Current Each Channel	≤ 1 us P.W., 300pps	1.0	A
V_{R}	Reverse Input Voltage Each Channel		5	V
P_{D}	Input Power Dissipation Each Channel	6N135/6N136 and HCPL2503/4502	100	mW
		HCPL-2530/253 ${ }^{(3)}$	45	
DETECTOR				
I_{O} (avg)	Average Output Current Each Channel		8	mA
$\mathrm{I}_{0}(\mathrm{pk})$	Peak Output Current Each Channel		16	mA
$\mathrm{V}_{\text {EBR }}$	Emitter-Base Reverse Voltage	6N135, 6N136 and HCPL2503 only	5	V
V_{CC}	Supply Voltage		-0.5 to 30	V
V_{O}	Output Voltage		-0.5 to 20	V
I_{B}	Base Current	6N135, 6N136 and HCPL2503 only	5	mA
PD	Output Power Dissipation Each Channel	6N135, 6N136, HCPL2503, HCPL4502 ${ }^{(4)}$	100	mW
		HCPL2530, HCPL2531	35	mW

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ Unless otherwise specified)
Individual Component Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Typ.*	Max.	Unit
EMITTER							
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.45	1.7	V
		$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$				1.8	
B_{VR}	Input Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		5.0			V
$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$	Temperature Coefficient of Forward Voltage	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$			-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

DETECTOR

I_{OH}	Logic High Output Current	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	All	0.001	0.5	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	6N135 6N136 HCPL4502 HCPL2503	0.005	1	
		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$	All		50	
$\mathrm{I}_{\mathrm{CCL}}$	Logic Low Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$	6N135 6N136 HCPL4502 HCPL2503	120	200	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open, } \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$	HCPL2530 HCPL2531	200	400	
$\mathrm{I}_{\mathrm{CCH}}$	Logic High Supply Current	$\begin{aligned} & I_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	6N135 6N136 HCPL4502 HCPL2503		1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$	6N135 6N136 HCPL4502 HCPL2503		2	
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { HCPL2530 } \\ & \text { HCPL2531 } \end{aligned}$	0.02	4	

*All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Electrical Characteristics (Continued) ($T_{A}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)
Transfer Characteristics

${ }^{*}$ All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Note:

5. Current Transfer Ratio is defined as a ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100\%.

Electrical Characteristics (Continued) ($T_{A}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)
Switching Characteristics ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$)

Symbol	Parameter	Test Conditions	Device	Min.	Typ.*	Max.	Unit
$\mathrm{T}_{\text {PHL }}$	Propagation Delay Time to Logic LOW	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(6)}(\text { Fig. } 7) \end{aligned}$	6N135 HCPL2530		0.45	1.5	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(7)} \text { (Fig. 7) } \end{aligned}$	6N136 HCPL4502 HCPL2503 HCPL2531		0.45	0.8	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(6)}$ (Fig. 7)	$\begin{gathered} \text { 6N135 } \\ \text { HCPL2530 } \end{gathered}$			2.0	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(7)}$ (Fig. 7)	6N136 HCPL4502 HCPL2503 HCPL2531			1.0	$\mu \mathrm{s}$
$\mathrm{T}_{\text {PLH }}$	Propagation Delay Time to Logic HIGH	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},\left(\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega,\right. \\ & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(6)} \text { (Fig. 7) } \end{aligned}$	6N135 HCPL2530		0.5	1.5	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(7)} \text { (Fig. 7) } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	6N136 HCPL4502 HCPL2503 HCPL2531		0.3	0.8	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(6)}$ (Fig. 7)	$\begin{gathered} \text { 6N135 } \\ \text { HCPL2530 } \end{gathered}$			2.0	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}^{(7)}$ (Fig. 7)	$\begin{gathered} \text { 6N136 } \\ \text { HCPL4502 } \\ \text { HCPL2503 } \\ \text { HCPL2531 } \end{gathered}$			1.0	$\mu \mathrm{s}$
$\mathrm{ICM}_{\mathrm{H}} \mathrm{l}$	Common Mode Transient Immunity at Logic High	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \\ & \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(8)} \text { (Fig. 8) } \end{aligned}$	$\begin{gathered} \text { 6N135 } \\ \text { HCPL2530 } \end{gathered}$		10,000		V/ $\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(8)} \text { (Fig. 8) } \end{aligned}$	6N136 HCPL4502 HCPL2503 HCPL2531		10,000		V/ $\mu \mathrm{s}$
$\mathrm{ICM}_{\mathrm{L}} \mathrm{l}$	Common Mode Transient Immunity at Logic Low	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}} \mathrm{P}, \\ & \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(8)} \text { (Fig. 8) } \end{aligned}$	6N135 HCPL2530		10,000		V/us
		$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega^{(8)} \text { (Fig. 8) } \end{aligned}$	6N136 HCPL4502 HCPL2503 HCPL2531		10,000		V/ $\mu \mathrm{s}$

${ }^{* *}$ All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Notes:

6. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
7. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and $5.6 \mathrm{k} \Omega$ pull-up resistor.
8. Common mode transient immunity in logic high level is the maximum tolerable (positive) $\mathrm{dV} \mathrm{cm}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse signal V_{CM}, to assure that the output will remain in a logic high state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in logic low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a logic low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).

Electrical Characteristics (Continued) ($T_{A}=0$ to $70^{\circ} \mathrm{C}$ unless otherwise specified)
Isolation Characteristics ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ Unless otherwise specified)

Symbol	Characteristics	Test Conditions	Min	Typ**	Max	Unit
$\mathrm{I}_{\text {I-O }}$	Input-Output Insulation Leakage Current	$\begin{aligned} & \text { Relative humidity }=45 \%, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{I}-\mathrm{O}}=3000 \mathrm{VDC}^{(9)} \\ & \hline \end{aligned}$			1.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {ISO }}$	Withstand Insulation Test Voltage	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{-\mathrm{O}} \leq 2 \mu \mathrm{~A}, \\ & \mathrm{t}=1 \mathrm{~min} . .^{9} \end{aligned}$	2500			$\mathrm{V}_{\text {RMS }}$
$\mathrm{R}_{\mathrm{l}-\mathrm{O}}$	Resistance (Input to Output)	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{VDC}^{(9)}$		10^{12}		Ω
$\mathrm{Cl}_{\text {- }}$	Capacitance (Input to Output)	$\mathrm{f}=1 \mathrm{MHz}^{(9)}$		0.6		pF
HFE	DC Current Gain	$\mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}^{(9)}$		150		
$\mathrm{I}_{\text {-I }}$	Input-Input Insulation Leakage Current	$\begin{aligned} & \text { RH } \leq 45 \%, V_{\text {l-I }}=500 \mathrm{VDC}^{(10)} \\ & \mathrm{t}=5 \mathrm{~s},(\mathrm{HCPL} 2530 / 2531 \text { only }) \end{aligned}$		0.005		$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{I}-1}$	Input-Input Resistance	$\mathrm{V}_{\text {I-I }}=500 \mathrm{VDC}^{(10)}$ (HCPL2530/2531 only)		10^{11}		Ω
$\mathrm{C}_{\mathrm{I}-1}$	Input-Input Capacitance	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz})^{(10)} \\ & (\mathrm{HCPL} 2530 / 2531 \text { only) } \end{aligned}$		0.03		pF

Notes:

9. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
10. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

Typical Performance Curves

Fig. 1 Normalized CTR vs. Forward Current

Fig. 3 Output Current vs. Output Voltage

Fig. 5 Propagation Delay vs. Temperature

Fig. 2 Normalized CTR vs. Temperature

Fig. 4 Logic High Output Current vs. Temperature

Fig. 6 Propagation Delay vs. Load Resistance

Test Circuits

Fig. 7 Switching Time Test Circuit

Fig. 8 Common Mode Immunity Test Circuit

Ordering Information

Option	Example Part Number	Description
S	6N135S	Surface Mount Lead Bend
SD	6N135SD	Surface Mount; Tape and reel
W	$6 N 135 W$	0.4 " Lead Spacing
V	6N135V	VDE0884
WV	6N135WV	VDE0884; 0.4" lead spacing
SV	6N135SV	VDE0884; surface mount
SDV	6N135SDV	VDE0884; surface mount; tape and reel

Marking Information

Definitions	
1	Fairchild logo
2	Device number
3	VDE mark (Note: Only appears on parts ordered with VDE option - See order entry table)
4	Two digit year code, e.g., '03'
5	Two digit work week ranging from '01' to '53'
6	Assembly package code

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

