

Sample &

Buy

MAX232, MAX232I

SLLS047M-FEBRUARY 1989-REVISED NOVEMBER 2014

MAX232x Dual EIA-232 Drivers/Receivers

Technical

Documents

1 Features

- Meets or Exceeds TIA/EIA-232-F and ITU Recommendation V.28
- Operates From a Single 5-V Power Supply With 1.0-µF Charge-Pump Capacitors
- · Operates up to 120 kbit/s
- Two Drivers and Two Receivers
- ±30-V Input Levels
- Low Supply Current: 8 mA Typical
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
- Upgrade With Improved ESD (15-kV HBM) and 0.1-µF Charge-Pump Capacitors is Available With the MAX202 Device

2 Applications

- TIA/EIA-232-F
- Battery-Powered Systems
- Terminals
- Modems
- Computers

4 Simplified Schematic

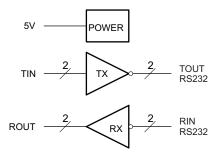
3 Description

Tools &

Software

The MAX232 device is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/EIA-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels.

Support &


Community

20

Device	Information ⁽¹⁾
--------	----------------------------

ORDER NUMBER	PACKAGE (PIN)	BODY SIZE				
MAX232x	SOIC (16)	9.90 mm × 3.91 mm				
	SOIC (16)	10.30 mm × 7.50 mm				
	PDIP (16)	19.30 mm × 6.35 mm				
	SOP (16)	10.3 mm × 5.30 mm				

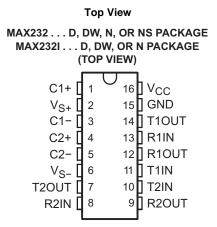
(1) For all available packages, see the orderable addendum at the end of the datasheet.

2

Table of Contents

1	Feat	tures 1	
2	Арр	lications 1	
3	Des	cription 1	
4	Sim	plified Schematic1	
5	Rev	ision History 2	10
6	Pin	Configuration and Functions 3	
7	Spe	cifications 4	1.
	7.1	Absolute Maximum Ratings 4	
	7.2	Handling Ratings 4	1:
	7.3	Recommended Operating Conditions 4	
	7.4	Thermal Information 4	
	7.5	Electrical Characteristics — Device 4	1:
	7.6	Electrical Characteristics — Driver 5	
	7.7	Electrical Characteristics — Receiver 5	
	7.8	Switching Characteristics5	
	7.9	Typical Characteristics 6	
8	Para	ameter Measurement Information7	14
9	Deta	ailed Description9	

5 Revision History


Cł	hanges from Revision L (March 2004) to Revision M	Page
•	Removed Ordering Information table.	1
	Added Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	
•	Moved T _{stg} to Handling Ratings table	4

	9.1 Overvie	ew9
	9.2 Functio	onal Block Diagram 9
	9.3 Feature	e Description
	9.4 Device	Functional Modes
10	Applicatio	n and Implementation 10
	10.1 Applic	cation Information 10
	10.2 Typica	al Application 10
11	Power Sup	pply Recommendations 11
12	Layout	
	12.1 Layou	It Guidelines 11
	12.2 Layou	It Example 11
13	Device and	d Documentation Support 12
	13.1 Relate	ed Links 12
	13.2 Trade	marks 12
	13.3 Electr	ostatic Discharge Caution 12
	13.4 Gloss	ary 12
14	Mechanica	al, Packaging, and Orderable
		n 12

6 Pin Configuration and Functions

Pin Functions

PIN		ТҮРЕ	DESCRIPTION
NAME	NO.	TIFE	DESCRIPTION
C1+	1	—	Positive lead of C1 capacitor
VS+	2	0	Positive charge pump output for storage capacitor only
C1-	3	—	Negative lead of C1 capacitor
C2+	4	—	Positive lead of C2 capacitor
C2-	5	_	Negative lead of C2 capacitor
VS-	6	0	Negative charge pump output for storage capacitor only
T2OUT, T1OUT	7, 14	0	RS232 line data output (to remote RS232 system)
R2IN, R1IN	8, 13	I	RS232 line data input (from remote RS232 system)
R2OUT, R1OUT	9, 12	0	Logic data output (to UART)
T2IN, T1IN	10, 11	I	Logic data input (from UART)
GND	15	—	Ground
V _{CC}	16	—	Supply Voltage, Connect to external 5V power supply

MAX232, MAX232I

SLLS047M-FEBRUARY 1989-REVISED NOVEMBER 2014

XAS STRUMENTS

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Input Supply voltage range ⁽²⁾		-0.3	6	V
V _{S+}	Positive output supply voltage range		V _{CC} – 0.3	15	V
V _{S-}	Negative output supply voltage range		-0.3	-15	V
VI		T1IN, T2IN	-0.3	$V_{CC} + 0.3$	N/
	Input voltage range	R1IN, R2IN		±30	V
V		T1OUT, T2OUT	V _{S-} – 0.3	$V_{S+} + 0.3$	V
Vo	Output voltage range	R1OUT, R2OUT	-0.3	V _{CC} + 0.3	V
	Short-circuit duration	T1OUT, T2OUT		Unlimited	
TJ	Operating virtual junction temperature			150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND. (2)

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature range		-65	150	°C
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all $\operatorname{pins}^{(1)}$	0	2000	V
V _(ESD) Ele	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	0	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. (2)

7.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.5	5	5.5	V
VIH	High-level input voltage (T1IN,T2IN)		2			V
V _{IL}	Low-level input voltage (T1IN, T2IN)				0.8	V
R1IN, R2IN	Receiver input voltage				±30	V
-	Operating free air temperature	MAX232	0		70	°C
IA	Operating free-air temperature MAX2321		-40		85	

7.4 Thermal Information

	MAX232xD	MAX232xDW	MAX232xN	MAX232xNS	
THERMAL METRIC ⁽¹⁾	SOIC	SOIC wide	PDIP	SOP	UNIT
	16 PINS	16 PINS	16 PINS	16 PINS	
R _{8JA} Junction-to-ambient thermal resistance	73	57	67	64	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

7.5 Electrical Characteristics — Device

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
I _{CC}	Supply current	V_{CC} = 5.5V, all outputs open, T_A = 25°C		8	10	mA

Test conditions are C1–C4 = 1 μF at V_{CC} = 5 V \pm 0.5 V All typical values are at V_{CC} = 5 V, and T_A = 25°C. (1)

(2)

7.6 Electrical Characteristics — Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER		TEST CONDITIONS ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	T1OUT, T2OUT	$R_L = 3 k\Omega$ to GND	5	7		V
V _{OL}	Low-level output voltage ⁽³⁾	T1OUT, T2OUT	$R_L = 3 k\Omega$ to GND		-7	-5	V
r _O	Output resistance	T1OUT, T2OUT	$V_{S+} = V_{S-} = 0, V_O = \pm 2 V$	300			Ω
$I_{OS}^{(4)}$	Short-circuit output current	T1OUT, T2OUT	$V_{CC} = 5.5 \text{ V}, V_{O} = 0 \text{ V}$		±10		mA
I _{IS}	Short-circuit input current	T1IN, T2IN	V ₁ = 0			200	μA

Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V All typical values are at V_{CC} = 5 V, T_A = 25°C. (1)

(2)

(3) The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

Not more than one output should be shorted at a time. (4)

7.7 Electrical Characteristics — Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

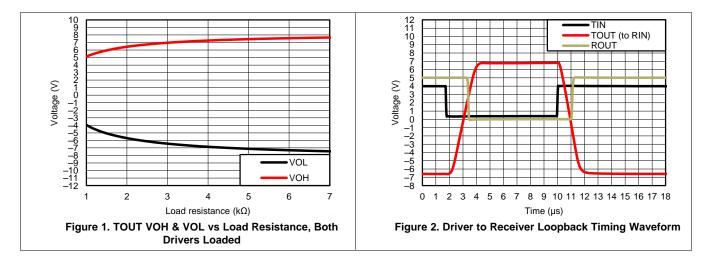
	PARAMETER	TEST CONDITIONS ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT	
V _{OH}	High-level output voltage	R1OUT, R2OUT	$I_{OH} = -1 \text{ mA}$	3.5			V
V _{OL}	Low-level output voltage ⁽³⁾	R1OUT, R2OUT	I _{OL} = 3.2 mA			0.4	V
V _{IT+}	Receiver positive-going input threshold voltage	R1IN, R2IN	V _{CC} = 5 V, T _A = 25°C		1.7	2.4	V
V _{IT-}	Receiver negative-going input threshold voltage	R1IN, R2IN	V _{CC} = 5 V, T _A = 25°C	0.8	1.2		V
V _{hys}	Input hysteresis voltage	R1IN, R2IN	$V_{CC} = 5 V$	0.2	0.5	1	V
r _l	Receiver input resistance	R1IN, R2IN	$V_{CC} = 5 \text{ V}, \text{T}_{\text{A}} = 25^{\circ}\text{C}$	3	5	7	kΩ

Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 5 V, T_A = 25°C. (1)

(2)

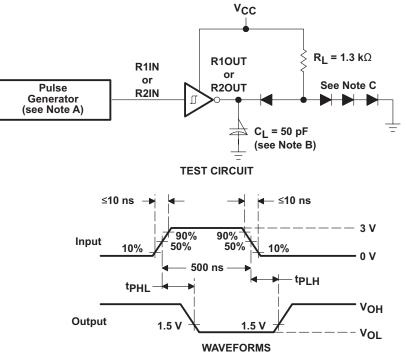
(3) The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only.

7.8 Switching Characteristics


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

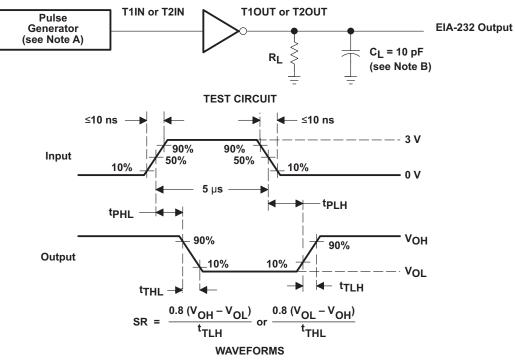
PARAMETER		TEST CONDITIONS ⁽¹⁾	MIN	TYP ⁽¹⁾	MAX	UNIT
SR	Driver slew rate	RL = 3 k Ω to 7 k Ω , see Figure 4			30	V/µs
SR(t)	Driver transition region slew rate	see Figure 5		3		V/µs
	Data rate	One TOUT switching		120		kbit/s
t _{PLH®)}	Receiver propagation delay time, low- to high-level output	TTL load, see Figure 3		500		ns
t _{PHL®)}	Receiver propagation delay time, high- to low-level output	TTL load, see Figure 3		500		ns

(1) Test conditions are C1–C4 = 1 μ F at V_{CC} = 5 V ± 0.5 V.


7.9 Typical Characteristics

Copyright © 1989–2014, Texas Instruments Incorporated

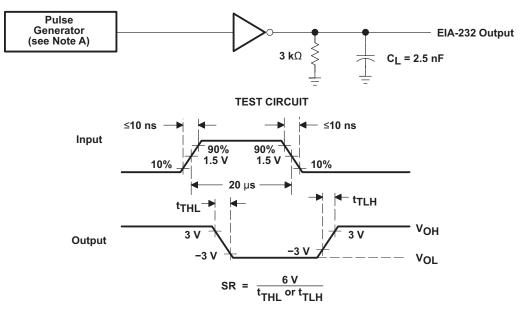
8 Parameter Measurement Information



- A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$.
- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064 or equivalent.

Figure 3. Receiver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements

Texas Instruments


www.ti.com

Parameter Measurement Information (continued)

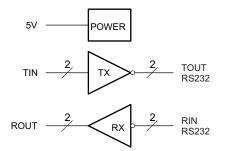
- A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$.
- B. C_L includes probe and jig capacitance.

Figure 4. Driver Test Circuit and Waveforms for t_{PHL} and t_{PLH} Measurements (5-µs Input)

WAVEFORMS

A. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, duty cycle $\leq 50\%$.

Figure 5. Test Circuit and Waveforms for t_{THL} and t_{TLH} Measurements (20-µs Input)



Detailed Description 9

9.1 Overview

The MAX232 device is a dual driver/receiver that includes a capacitive voltage generator using four capacitors to supply TIA/EIA-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC[™] library. Outputs are protected against shorts to ground.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Power

The power block increases and inverts the 5V supply for the RS232 driver using a charge pump that requires four 1-µF external capacitors.

9.3.2 RS232 Driver

Two drivers interface standard logic level to RS232 levels. Internal pull up resistors on TIN inputs ensures a high input when the line is high impedance.

9.3.3 RS232 Receiver

Two receivers interface RS232 levels to standard logic levels. An open input will result in a high output on ROUT.

9.4 Device Functional Modes

9.4.1 V_{CC} powered by 5V

The device will be in normal operation.

9.4.2 V_{CC} unpowered

When MAX232 is unpowered, it can be safely connected to an active remote RS232 device.

INPUT TIN	ΟυΤΡυΤ ΤΟυΤ
L	Н
Н	L

Table 1. Function Table Each Driver⁽¹⁾

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

Copyright © 1989–2014, Texas Instruments Incorporated

Texas Instruments

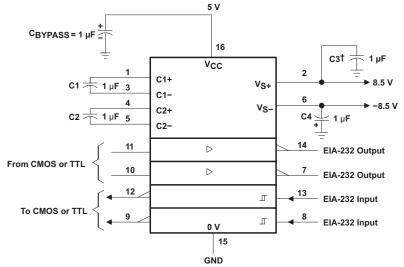
www.ti.com

INPUTS	OUTPUT
RIN	ROUT
L	Н
Н	L
Open	Н

Table 2. Function Table Each Receiver⁽¹⁾

 H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = disconnected input or connected driver off

10 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

For proper operation add capacitors as shown in Figure 6. Pins 9 through 12 connect to UART or general purpose logic lines. EIA-232 lines will connect to a connector or cable.

10.2 Typical Application

 $^{\dagger}\,\text{C3}$ can be connected to V_{CC} or GND.

NOTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. In addition to the 1-μF capacitors shown, the MAX202 can operate with 0.1-μF capacitors.

Figure 6. Typical Operating Circuit

10.2.1 Design Requirements

- V_{CC} minimum is 4.5 V and maximum is 5.5 V.
- Maximum recommended bit rate is 120 kbps.

10.2.2 Detailed Design Procedure

Use 1 uF tantalum or ceramic capacitors.

Typical Application (continued)

10.2.3 Application Curves

11 Power Supply Recommendations

The V_{CC} voltage should be connected to the same power source used for logic device connected to TIN pins. V_{CC} should be between 4.5V and 5.5V.

12 Layout

12.1 Layout Guidelines

Keep the external capacitor traces short. This is more important on C1 and C2 nodes that have the fastest rise and fall times.

12.2 Layout Example

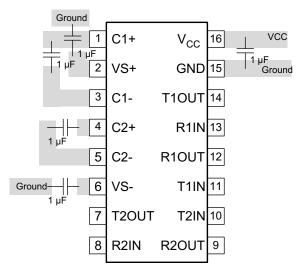


Figure 9. Layout Schematic

12 Submit Documentation Feedback

Copyright © 1989–2014, Texas Instruments Incorporated

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
MAX232	Click here	Click here	Click here	Click here	Click here
MAX232I	Click here	Click here	Click here	Click here	Click here

Table 3. Related Links

13.2 Trademarks

All trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
MAX232D	(1) ACTIVE	SOIC	D	16	40	(2) Green (RoHS & no Sb/Br)	(6) CU NIPDAU	(3) Level-1-260C-UNLIM	0 to 70	(4/5) MAX232	Samples
MAX232DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX232	Samples
MAX232DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX232	Samples
MAX232DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	MAX232	Samples
MAX232DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX232	Samples
MAX232DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX232	Samples
MAX232DW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX232	Samples
MAX232DWE4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX232	Samples
MAX232DWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX232	Samples
MAX232DWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX232	Samples
MAX232DWRE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX232	Samples
MAX232DWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX232	Samples
MAX232ID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX232I	Samples
MAX232IDG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX232I	Samples
MAX232IDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX232I	Samples
MAX232IDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX232I	Samples
MAX232IDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX232I	Samples

24-Aug-2018

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
MAX232IDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX232I	Samples
MAX232IDWRE4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX232I	Samples
MAX232IDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	MAX232I	Samples
MAX232IN	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	MAX232IN	Samples
MAX232INE4	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	MAX232IN	Samples
MAX232N	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	MAX232N	Samples
MAX232NE4	ACTIVE	PDIP	Ν	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	MAX232N	Samples
MAX232NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	MAX232	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

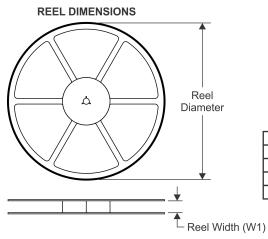
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

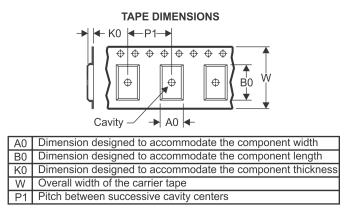
PACKAGE OPTION ADDENDUM

24-Aug-2018

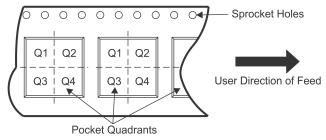
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

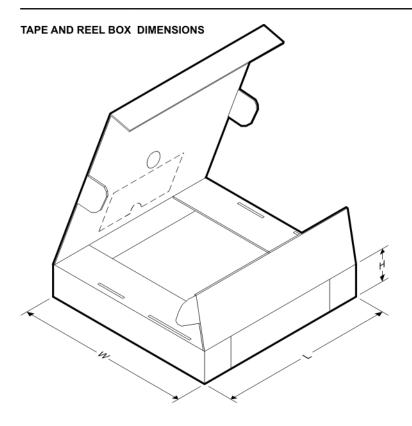

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MAX232DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
MAX232DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
MAX232DRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
MAX232DRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
MAX232DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
MAX232DWRG4	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
MAX232IDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
MAX232IDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
MAX232IDWRG4	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

Texas Instruments

www.ti.com

PACKAGE MATERIALS INFORMATION

27-Feb-2015

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MAX232DR	SOIC	D	16	2500	333.2	345.9	28.6
MAX232DR	SOIC	D	16	2500	367.0	367.0	38.0
MAX232DRG4	SOIC	D	16	2500	333.2	345.9	28.6
MAX232DRG4	SOIC	D	16	2500	367.0	367.0	38.0
MAX232DWR	SOIC	DW	16	2000	367.0	367.0	38.0
MAX232DWRG4	SOIC	DW	16	2000	367.0	367.0	38.0
MAX232IDR	SOIC	D	16	2500	333.2	345.9	28.6
MAX232IDWR	SOIC	DW	16	2000	367.0	367.0	38.0
MAX232IDWRG4	SOIC	DW	16	2000	367.0	367.0	38.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

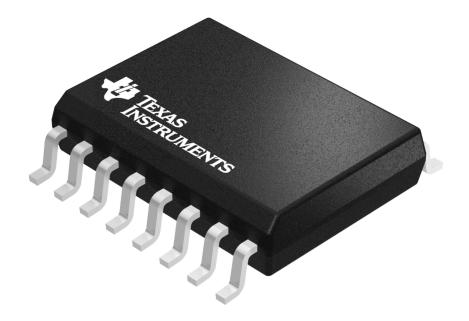
PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

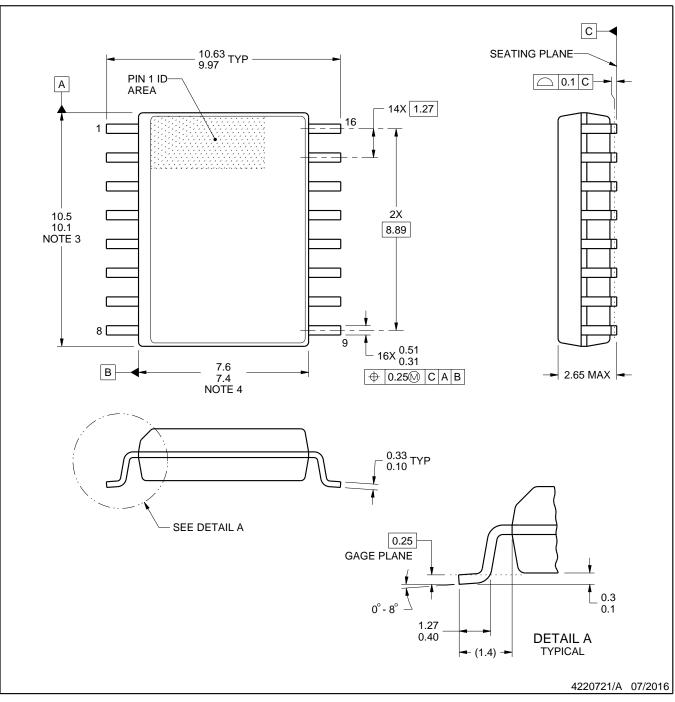
GENERIC PACKAGE VIEW

SOIC - 2.65 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040000-2/H


DW0016A

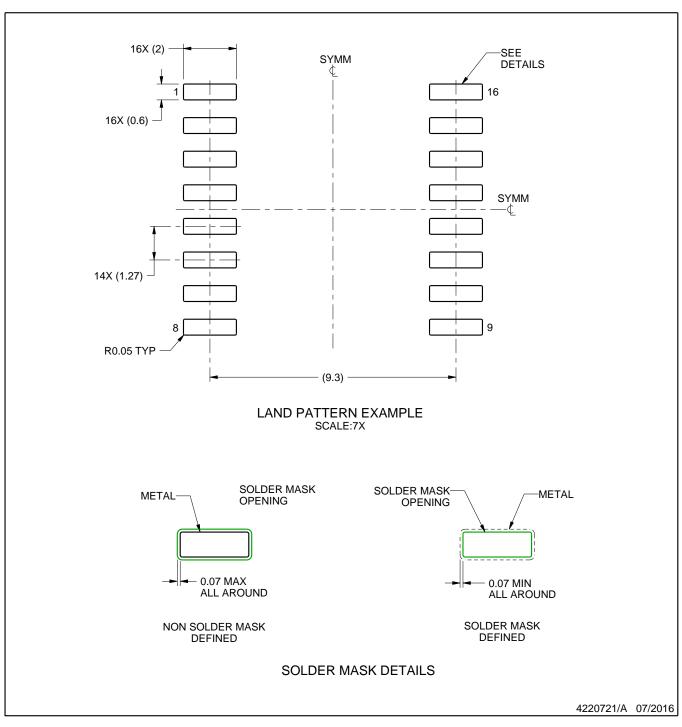
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.



DW0016A

EXAMPLE BOARD LAYOUT

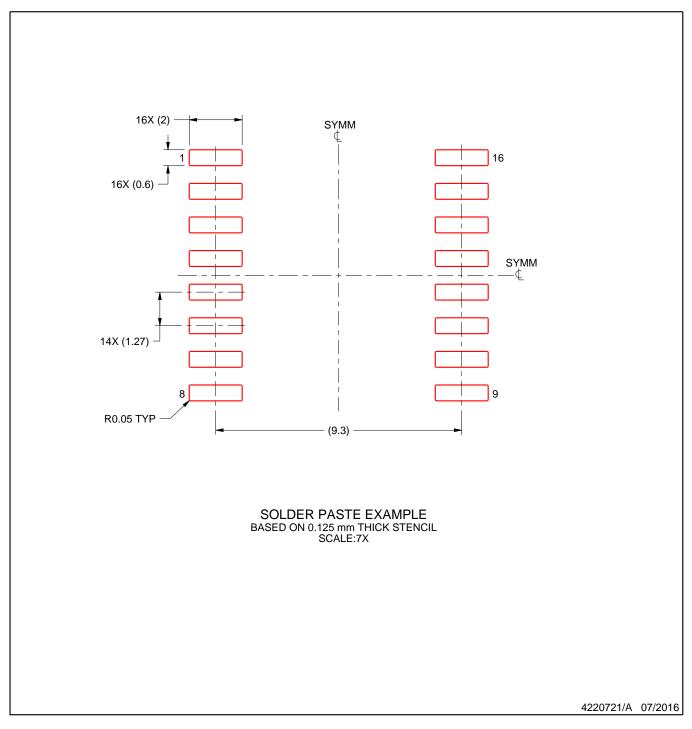
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0016A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated